
Warsaw University of Technology Academic year 2010/2011
Faculty of Electronics
and Information Technologies
Institute of Radioelectronics

Master of Science thesis

Tomasz Włostowski

Precise time and frequency transfer in a
White Rabbit network

Supervisor:
prof. nzw. dr hab. Zbigniew Kulka

. .
Evaluation

. .
Signature of the Head of
Examination Committee

Acknowledgements:
Mr Javier Serrano,
Mr Maciej Lipiński,

Mr Pablo Alvarez Sanchez,
Mr Alessandro Rubini,
Mr Emilio Garcia Cota,

the members of the BE-CO-HT section at CERN
and all White Rabbit project contributors,

Mr Grzegorz Kasprowicz,

Professor Zbigniew Kulka

Thank you for your help and support!

I dedicate this thesis to my Mom.
Tomek

Abstract
The White Rabbit [5] project is a multi-laboratory and multi-company effort to de-
sign a control network based on Ethernet, which provides deterministic data transfer
capabilities and an accurate clock synchronization mechanism.

This thesis describes in detail the mechanisms used in the White Rabbit network for
precise time and frequency transfer (with a master-slave time offset below 1 ns).

The first chapter contains an introduction to timing systems with a focus on systems
used in particle accelerators. In the 2nd chapter, the reader is presented the basic
theory (phase noise, jitter, phase-locked loops) required to understand the operation of
such systems. The 3rd chapter describes the White Rabbit network structure and the
employed synchronization and syntonization methods (Precision Time Protocol — IEEE
1588 in conjunction with Synchronous Ethernet). The 4th chapter presents a prototype
hardware and software design of the key component in a White Rabbit network — the
White Rabbit Switch.

The last two chapters summarize the results, discuss possible applications and plans
for further development.

Streszczenie
Precyzyjny transfer czasu i częstotliwości w sieci White Rabbit

White Rabbit [5] jest projektem opartej na standardzie Ethernet sieci komputerowej,
umożliwiającej deterministyczne transfery danych oraz precyzyjny transfer czasu i częs-
totliwości. Projekt powstaje przy współudziale kilku instytucji naukowych oraz firm.

W niniejszej pracy szczegółowo opisano mechanizmy wykorzystywane w sieci White
Rabbit do precyzyjnej synchronizacji czasu (z błędem poniżej 1 ns) i transferu wzorca
częstotliwości.

Pierwszy rozdział zawiera wprowadzenie do systemów synchronizacji czasu, z
naciskiem na systemy stosowane w akceleratorach czątek. Następnie, w rozdziale
drugim czytelnik poznaje podstawy teoretyczne (szumy fazowe, jitter, pętle fazowe PLL)
niezbędne do zrozumienia zasad działania takich systemów. Rozdział 3 opisuje strukturę
sieci White Rabbit oraz zastosowane mechanizmy synchronizacji czasu (Precision Time
Protocol – IEEE 1588 w połączeniu z synchronicznym Ethernetem). W rozdziale 4
przedstawiono projekt prototypu sprzętu i oprogramowania centralnego elementu sieci
White Rabbit — przełącznika Ethernetowego WR.

Ostatnie dwa rozdziały zawierają podsumowanie pracy, omawiają możliwe aplikacje
systemu oraz dalsze plany jego rozwoju.

Contents

List of abbreviations . 5

1. Introduction . 7

1.1. Background . 7
1.2. Scope . 9

2. Theoretical background . 11

2.1. Time and frequency references . 11
2.1.1. Atomic clocks . 11
2.1.2. GPS-synchronized clocks . 12

2.2. The imperfect clock signal . 14
2.3. Phase noise and jitter . 14

2.3.1. Sampled phase noise considerations . 16
2.3.2. Relationship with oscilloscope jitter measurements 16

2.4. Measuring phase noise . 17
2.5. Phase-locked loops . 18

3. Synchronization in White Rabbit . 21

3.1. The clock synchronization problem . 21
3.2. Physical network layer . 22

3.2.1. IEEE 802.3 optical gigabit Ethernet . 22
3.2.2. Low-level 1000Base-X encoding . 23

3.3. Precision Time Protocol (IEEE 1588) . 26
3.3.1. Synchronization in PTP . 27
3.3.2. PTP performance and limitations . 30

3.4. Synchronous Ethernet . 31
3.5. White Rabbit synchronization model . 32

3.5.1. WR link model . 33
3.5.2. Link detection and syntonization . 36
3.5.3. Coarse delay measurement . 37
3.5.4. Digital DMTD phase detector . 39
3.5.5. Fine delay measurement . 41
3.5.6. Link asymmetry estimation . 43
3.5.7. Establishing and maintaining synchronization 48

3.6. Integration of White Rabbit into PTP . 50

4. The White Rabbit Switch . 52

Contents

4.1. Overview . 52
4.2. Hardware . 53

4.2.1. Hardware platform . 53
4.2.2. System design . 55
4.2.3. Main board . 56
4.2.4. Timing board . 60
4.2.5. Mini-backplane . 62

4.3. HDL Design . 63
4.3.1. WR Endpoints . 65
4.3.2. PPS Generator and TX Timestamping Unit 68
4.3.3. Routing Table Unit and Switching Core 69
4.3.4. CPU Network Interface Controller . 70
4.3.5. DDMTD phase detector implementation 71
4.3.6. Helper PLL . 73
4.3.7. Main PLL . 75
4.3.8. PHY latency calibrator . 76

4.4. Software . 77
4.4.1. System architecture . 77
4.4.2. Hardware Abstraction Layer . 78
4.4.3. PTP Daemon . 79

4.5. Performance measurements . 81
4.5.1. Synchronization accuracy . 82
4.5.2. Syntonization performance . 82

5. Applications of White Rabbit . 88

5.1. Distributed Direct Digital Synthesis (D3S) . 88
5.2. Distributed Oscilloscope . 89

6. Summary . 91

Bibliography . 93

List of Figures . 95

Appendices . 97

6.1. Thesis sources . 97
6.2. WRS design and source code . 97

4

List of abbreviations

1588 IEEE 1588 standard
802.3 IEEE 802.3 Ethernet
AMC Advanced Mezzanine Card
BMC Best Master Clock (algorithm)
CDR Clock Data Recovery
DAQ Data Acquisition System
DDMTD Digital Dual Mixer Time Difference
DDS Direct Digital Synthesis
GMT General Machine Timing
GMRP Generic Multicast Registration Protocol
HAL Hardware Abstraction Layer
HP High Priority (Ethernet frame)
IPMI Intelligent Platform Management Interface
MAC Media Access Controller
MCH Management Carrier Hub
NTP Network Time Protocol
PCS Physical Coding Sublayer
PI Proportional-Integrating (regulator)
PD Phase Detector
PDV Packet Delay Variation
PHY Physical Layer (device)
PLL Phase-Locked Loop
PPS Pulse Per Second (timing signal)
PSD Power Spectral Density
PTP IEEE 1588 Precision Time Protocol
RTU Routing Table Unit
SMF Single-Mode Fiber
SNMP Simple Network Management Protocol
SSH Secure Shell
STM System Timing Master
Sync-E Synchronous Ethernet
TAI Temps Atomique International - International Atomic Time
TXTSU TX Timestamping Unit

0 List of abbreviations

TDC Time-to-Digital Converter
TLV Type-Length-Value
TSU Time Stamping Unit
UI Unit Interval
UTC Universal Coordinated Time
VCO Voltage Controlled Oscillator
VCXO Voltage Controlled Crystal Oscillator
TCVCXO Temperature Compensated VCXO
WDM Wavelength Division Multiplexing
WR White Rabbit
WRS White Rabbit (Ethernet) Switch

6

1. Introduction

1.1. Background

The Large Hadron Collider (LHC) is arguably the biggest and most complex scientific
instrument built by humankind. It is located in a 27 km-long underground tunnel,
crossing the Swiss-French border near the city of Geneva.

The foremost purpose of the LHC is to extend our understanding of the current
theory describing elementary particles, called the Standard Model, to verify the exis-
tence of the Higgs boson and to study “new” physics beyond the Standard Model such
as supersymmetry or extra dimensions. There are also expectations for clarifying the
origin and properties of the so-called dark matter which is believed to constitute about
25% of all the matter in the Universe. Theoretical expectations place these phenom-
ena within the teraelectronvolt energy range, accessible by the LHC with its 14 TeV
center-of-mass collision energy. The probability of the creation of interesting particles
in a single collision is however very small. This justifies the need for a collider which can
simultaneously provide high beam energy and high luminosity (expressed as the number
of particles in the beam per unit area per unit time).

The LHC is not a standalone device. It needs an injection chain consisting of smaller
accelerators, which deliver a beam of particles with the required energy, luminosity and
spatial structure. A simplified diagram of the CERN accelerator complex is depicted in
Figure 1.1.

The LHC can collide either protons or heavy ions, but for the purpose of this intro-
duction, only the proton system will be discussed. The proton beam originates from a
small gas canister, containing pure hydrogen. Hydrogen atoms are supplied to a proton
generator which strips off the electrons in a high voltage electric field. The protons
are accelerated to an energy of 50 MeV in Linac 2. Then, the beam enters the Proton
Synchrotron Booster (PSB) where its energy is increased to 1.4 GeV. The PSB is made
of four superimposed rings whose aggregate circumference is equal to the circumference
of he next machine (Proton Synchrotron – PS). The beam is injected sequentially into
separate rings and ejected into a single PS ring but with increased bunch luminosity.
The PS output energy reaches 32 GeV. The last machine in the injector chain, the 7
km-long Super Proton Synchrotron (SPS), provides two 450 GeV beams which are fed
in opposite directions to the LHC.

1.1. Background

LHC
(Large Hadron Collider)

SPS
(Super Proton Synchrotron)

PS
(Proton Synchrotron)

Booster

PSB

CMS

ATLAS

LHCbALICE

Lead
ions

Protons

8 km

Figure 1.1. Simplified schematic of LHC accelerator complex (not to scale)

The 27 km-long LHC tunnel is split into 8 segments, with a length of 3.5 km each.
Between the segments, there are 8 underground caverns. Half of them host the collider
equipment:
I point 4 contains the superconducting RF cavities. This is the only place in the LHC

where the beams are accelerated.
I point 6 is a beam dump station, where the beams can be safely ejected from the

LHC and their energy dissipated in a graphite target.
I points 3 and 7 host the beam collimators – a series of magnets forming the beam

cross-section into the required shape.
In the remaining 4 caverns, called ”interaction points” where the counter-running beams
collide, there are 6 particle detectors.
I ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) are

general-purpose experiments, capable of detecting a wide range of particles produced
in LHC collisions. The data from these detectors is used to search for new phenomena
– the Higgs boson, supersymmetry and extra dimensions

I ALICE (A Large Ion Collider Experiment) is a specialized heavy ion detector, where
heavy ions collisions at extreme energy densities will be analysed. It is expected that
a new phase of matter, called the quark-gluon plasma will form, the existence and
properties of which are key issues in quantum chromodynamics.

I LHCb (LHC Beauty Experiment) is used to study the asymmetry between matter
and antimatter (called CP violation) present in iteractions with B-particles (particles
which contain the bottom or “beauty” quark).

I TOTEM and LHCf - two smaller detectors. TOTEM is dedicated to precise mea-
surement of proton-proton interaction cross-section and the deep study of proton

8

1.2. Scope

structure. LHCf uses forward particles created in LHC collisions to simulate and
study cosmic rays in laboratory conditions.

All the machines in the complex are able to interoperate thanks to the sharing of a
common and highly precise notion of time. Providing this timing service in a reliable
and accurate fashion is the role of timing systems, of which one—White Rabbit—is the
subject of this thesis.

1.2. Scope

Timing systems are specialized networks which provide a common notion of time in
a distributed environment. In other words, they ensure that all clocks in the system are
ticking at the same speed and showing identical time at every instant.

Accurate time synchronization is a major requirement in many real-time applications.
Distributed control systems, factory automation and data acquisition systems all require
the execution of operations with very tight time constraints. This becomes particularly
difficult in large-scale systems such as CERN’s accelerator complex, where distances
between nodes are in the range of tens of kilometers, causing long and often unpredictable
transmission delays.

Most of the available off-the-shelf commercial timing solutions do not meet the re-
quirements of large complexes such as CERN. They are not easily scalable to support
thousands of nodes and cannot be used over large distances as their real-time perfor-
mance level would be severely reduced. Therefore almost all timing networks in the
accelerator world (even those commercially available) are custom-made.

Despite their cutting-edge performance, custom-made timing systems still suffer from
various issues:
I Lack of compatibility with other control systems and conformance to standards.
I Scalability problems.
I Architectural limitations. For example, the General Machine Timing system at

CERN is unidirectional; a slave cannot send any data using the timing network.
I Usage of application-specific hardware which has to be supported “in house” for the

entire lifetime of the control system.
The White Rabbit project began as a potential successor for several legacy control

and timing systems, such as the GMT which is currently in operation at CERN. After-
wards, it was also chosen as the timing system for new accelerators at GSI in Darmstadt,
Germany, and it is currently being considered by other institutes and companies. The
main goals of the project are to provide:
I A deterministic, large-scale monitoring and control network based on IEEE802.3

Synchronous Gigabit Ethernet, supporting more than 1000 nodes spread over tens
of kilometers, all synchronized to sub-nanosecond level.

9

1.2. Scope

I A scalable and modular platform that does not require specialized configuration and
maintenance.

I A mechanism for robust delivery of high priority messages with low and limited
transport delay under fault conditions.

I A fully open design, not tied to any particular hardware or software vendor.
In summary, White Rabbit (WR) aims to combine the accuracy of dedicated timing sys-
tems with the real-time performance of industrial networks and flexibility and scalability
of Ethernet, as depicted in Figure 1.2 .

Responsiveness

Accuracy

ScalabilityConfiguration

Determinism

< 1us routing delay (per 1 switch)

< 1 ns clock offset
between master
and every node.

Synchronous operation

> 1000 nodes in single network
10-20 km links

standard management tools
(SNMP)

ultralow PDV
for HP packets

Standard Ethernet Industrial Ethernet White Rabbit

Figure 1.2. Standard and Industrial Ethernet versus White Rabbit

The following chapters provide a detailed description of the clock synchronization
method employed in White Rabbit: Synchronous Ethernet for the physical layer and
link latency compensation using a Digital Dual Mixer Time Difference (DDMTD) phase
detector and the IEEE 1588 Precision Time Protocol. Also the hardware, FPGA and
software design of the core element of the White Rabbit network, the WR Ethernet
switch, are presented. Finally, preliminary clock quality measurements and possible
applications of the WR timing system are discussed.

10

2. Theoretical background

The subject presented in this thesis requires the reader to have basic theoretical
knowledge about oscillators, time references, phase noise, jitter and phase-locked loops.
This chapter presents the minimal theoretical background necessary to understand the
problems and solutions discussed in the thesis.

2.1. Time and frequency references

Every timing system needs a primary time source which serves as a reference for
all the nodes. In most systems, the reference clock must fulfill rigorous requirements
for the long-term stability, so it can be traceable to a common time standard, such as
UTC (Universal Coordinated Time) or TAI (Temps Atomique International). Therefore,
atomic clocks or Global Positioning System (GPS) disciplined oscillators are commonly
chosen as primary clock sources.

2.1.1. Atomic clocks

Atomic clocks count time by measuring the characteristic resonance frequencies of
atoms excited by lasers or microwave RF signals [22] and are among the most stable
time references available. The two most widespread atomic clocks (although not the
most stable) are cesium and rubidium clocks. Figure 2.1 shows the simplified structure
of a typical cesium clock.

Cesium clocks operate by locking the frequency of a local oscillator to the resonance
frequency of the transition between hyperfine states |4,0〉 and |3,0〉 in a cesium-133
atom.

A sample of cesium is heated in an oven to a gaseous state. The atoms, heated to
high temperature, can exit the oven through a small cavity, forming a beam. The beam
then passes through an assembly of electromagnets called “state selector”, where it is
split by magnetic field into multiple beams depending on the spin energy of the atoms.
Only the atoms which are in the low energy state will follow a trajectory leading to exit
the state selector. Atoms having other states are absorbed by the getter.

Selected cesium atoms pass through a U-shaped Ramsey cavity in which they are
exposed to microwave radiation with a frequency of about 9.19 GHz, causing transitions
to the higher energy state. Next to the cavity, in another set of magnets, only the atoms

2.1. Time and frequency references

Cesium
oven

exit
cavity

State selection
magnets

State detection
magnets

Microwave cavity
getter

getter

Detector

Vacuum cavity

PLL
synthesizer

servo
feedback

Tunable
quartz

oscillator

9 192 631 770 Hz

10 MHz

1 PPS

Figure 2.1. Structure of cesium beam atomic clock

which have undergone the required state transition are directed to an electron multiplier
detector.

The signal from the detector is fed to the servo controller which maintains such fre-
quency of the tunable quartz oscillator, at which the detector output is at the maximum
level. In such conditions, the maximum number of cesium atoms get into the resonance
state and the quartz oscillator becomes locked to the discrete frequency of the atomic
resonance. For Cesium-133, this frequency is exactly 9,192,631,770 Hz which is also the
definition of the second unit in the SI unit system.

Usually, the time information is outputted as a 10 MHz high-speed clock, PPS (one
Pulse Per Second) signal and a UTC time code outputted using a serial port. Modern
atomic clocks fit in an enclosure of the size of a suitcase.

2.1.2. GPS-synchronized clocks

Another way of obtaining accurate time, traceable to a primary atomic clock is to
use a GPS time receiver. In fact, all GPS navigation receivers are also timing receivers,
as the synchronization is a prerequisite for estimating the geographical position of the
receiver.

The GPS system incorporates 24 to 32 satellites in the medium earth orbit and a
few control and monitoring stations on the surface of the Earth. Each of the satellites
is continuously transmitting two carriers, as depicted in Figure 2.2: L1 at 1575.42 MHz
and L2 at 1227.6 MHz. The carriers are modulated with pseudo-random code sequences
(Gold codes): the coarse/acquisition (C/A) code, available for everyone and the precise
(P) encrypted code, reserved for military users. As all the satellites use the same carrier
frequencies, the codes transmitted by the satellites are mutually orthogonal to prevent

12

2.1. Time and frequency references

interference. Also, a slow (50 bits/second) navigation message is added to both carriers,
containing satellite orbit data (ephemeris), error corrections and other data necessary
for the receiver to properly determine its position and time.

L1 carrier
1575.42 MHz

L2 carrier
1227.6 MHz

C/A code
1.023 Mbit/s

1 msec period

P/Y code
10.23 Mbit/s

7 days period

Navigation
message

50 bit/s

10 MHz

1 PPS

UTC time

Antennas

Atomic
clock

quartz
oscillator

servo

demodulator

Satellites Receiver

90
o

PRN code
for satellite 1

PRN code
for satellite 2

PRN code
for satellite N

cross
correlation

navigation
message
decoder

cross
correlation

cross
correlation

......

p1

p2

p3

b

servo feedback

divider sync

Figure 2.2. Synchronization using GPS

Signals generated by each satellite are locked to its local primary clock (two cesium
and two rubidium atomic clocks in a redundant configuration in each of the satellites).
The satellites’ clocks are synchronized and corrected by the terrestrial control stations.
The C/A code sequence repeats every 1 millisecond and its beginning is aligned with the
millisecond transition of the reference clock. The receiver knows the code sequences sent
by each satellite and attempts to determine an offset pi for each of the locally generated
PRS codes at which the cross-correlation with the received code sequence gives the
maximum value. These offsets are used to solve the system of navigation equations 2.1:

pi =
√

(x−xi)2 + (y−yi)2 + (z− zi2)− bc for i ∈ 1,2,3,4 (2.1)

where pi are the correlation offsets (called pseudoranges in GPS terminology), (x,y,z)
is the position of the receiver, (xi,yi, zi) are the positions of the satellites, c is the speed
of light and b is the clock offset, the value we are looking for. Note that as there are 4
unknowns in 2.1, the visibility of at least 4 satellites is required for the synchronization.

Time receivers ignore the position information and feed the value of offset b into a
servo adjusting the rate and offset of the local tunable quartz oscillator. The quartz
output signal is used to generate the local PRS codes and also output as a reference
frequency. The PPS signal is generated by dividing the 10 MHz clock, where the off-
set of PPS pulses and UTC time are determined by the navigation message decoder
(transmission of each navigation subframe begins at round seconds).

13

2.2. The imperfect clock signal

2.2. The imperfect clock signal

The goal of a timing system is to provide a common notion of time in a distributed
environment. This notion of time is usually the result of counting ticks of a clock
signal from an arbitrary instant. The clock signal is ideally of perfect periodicity and
stability. Real-world clocks, however, present imperfections in both amplitude and phase
as expressed in eq. 2.2.

x(t) = A(1 +m(t))sin(ωt+ϕ(t)) (2.2)

In case of digital systems, such as the White Rabbit, most of clock signals are output
by digital gates with hard amplitude limiters. These square signals do not suffer from
amplitude modulation, so the m(t) term can be ignored from now on. The random
variations in the zero-crossing of the pseudo-periodic signals arise from the ϕ(t) term,
usually called phase noise. Ignoring amplitude modulation, eq. 2.2 can be re-written as

x(t) = Asin
(
ω

(
t+ ϕ(t)

ω

))
(2.3)

showing that the ϕ(t)
ω term, which has dimension of time, represents the time deviations

in zero-crossing between the perfect and the imperfect periodic waveforms. ϕ(t) is a
random signal whose rms value is in principle a good indicator of clock quality. Dividing
that rms value by ω gives the clock jitter.

Why is phase noise so important? Because this imperfect clock is typically distributed
to many receivers, where local counting is done and the common notion of time is
generated. In order to compensate for delays in cables and fibers, a constant correction
is applied to the local time base, but this assumes the clock is a perfect copy of itself T
seconds ago, where T is any multiple of the clock period. If this is not the case, as in
all real-life clocks, the delay compensation mechanism does not fully achieve its goal.

2.3. Phase noise and jitter

Unfortunately, all clocks ultimately diverge in phase and even frequency, in such
a way that the rms calculation of jitter gets bigger and bigger as the averaging time
grows. In order to tackle this problem, it is useful to work in the frequency domain. The
Fourier transform of ϕ(t), noted Φ(f) has the same energy as the time-domain signal.
This result, expressed mathematically in eq. 2.4, is known as Parseval’s theorem [1]:

∫ +∞

−∞
|ϕ(t)|2 dt=

∫ +∞

−∞
|Φ(f)|2 df (2.4)

The units of the left-hand side of eq. 2.4 are rad2·s. A real-life signal would be
bounded in time, and hence the integration limits would be finite. Dividing the result

14

2.3. Phase noise and jitter

S (f)
j

f

other

f white frequency noise
-2

f flicker phase noise
-1

white phase noise

fH
fL

Figure 2.3. One-sided Power Spectral Distribution of phase noise for a typical oscillator.

of the integral by the time span of the signal would give an average of |ϕ(t)|2, and
taking the square root would give the phase noise rms value. Dividing that rms value by
the nominal frequency results in jitter. Unfortunately, increasing the integration limits
will cause infinite growth of measured jitter. This is also true for the integral in the
right-hand side, which can be interpreted as that of Power Spectral Density (PSD) of
phase noise [26] over all frequencies.

In reality, however, a particular application is only sensitive to jitter generated be-
tween two certain limits in the PSD curve. Figure 2.3 shows a typical plot of one-sided
PSD (Sϕ(f)) of the phase noise of an oscillator. Integration limits are set between
fL and fH . Phase noise below fL corresponds to variations which are so slow as to
be common mode for all timing receivers under all circumstances. For example, if
accelerators at CERN change beam every 1.2 seconds, phase noise below say 1 mHz
will give an almost constant contribution during the 1.2-second span and therefore will
not affect the performance of the timing system. Reasons for establishing an upper
limit in integration come mainly from the inability of some systems to react to such fast
variations, due to limitations in bandwidth. These limitations can be in electronics, such
as the bandwidth of the input stage of a digital gate, or in electro-mechanical systems
such as an RF accelerating cavity. It is important to justify lower and upper integration
limits for a given application based on both requirements and detailed knowledge of the
system.

Figure 2.3 also illustrates different types of noise, which can be identified by the
different slopes of their PSDs in a double logarithmic-scale graph [3]. White phase
noise dominates the high frequency area and has a flat distribution. Moving towards
lower frequencies, one can find flicker (pink) phase noise, which is characterized by a
PSD scaling with f−1. Since frequency is the derivative of phase, white frequency noise
– arising from white noise in the frequency-setting elements of an oscillator – features an
f−2 slope in the phase noise PSD diagram. Higher order f−n terms can also be present.
This low-frequency area of the graph will feature quick divergence under integration, and

15

2.3. Phase noise and jitter

corresponds to the problematic long time-spans mentioned earlier for the time-domain
representation.

2.3.1. Sampled phase noise considerations

As the the phase noise signal can be digitally recorded, it becomes desirable to
calculate overall jitter using a computer program. Given a sampled version of ϕ(t), called
ϕ[n], and its Discrete Fourier Transform (DFT), Φ[k], Parseval’s theorem becomes [2,21]

N−1∑
n=0
|ϕ[n]|2 = 1

N

N−1∑
k=0
|Φ[k]|2 (2.5)

where N is the number of acquired samples. Dividing eq. 2.5 by N and taking the
square root will give an estimate of rms phase noise.

2.3.2. Relationship with oscilloscope jitter measurements

In many cases, the parameter of interest is the time-domain first-difference jitter
between a certain rising edge of a clock signal and another rising edge k clock periods
later. This is typically measured with an oscilloscope triggered at the first edge of
interest, observing on the screen k ticks later in infinite persistence mode. Oscilloscope
time measurements, however, are inherently less precise than frequency-domain measure-
ments of phase noise as described in 2.4. Fortunately, one can take the first-difference
jitter problem and cast it into phase noise language so that first-difference jitter infor-
mation can be extracted from phase noise measurements in the frequency domain [8].
Let’s first define a discrete time deviation signal which measures the deviation between
the zero-crossing of a real oscillating signal and that of an ideal one. From eq. 2.3,
discretizing, we have

x[n] = ϕ[n]
ω

(2.6)

where x is now a time deviation and ω is the nominal frequency of the oscillating signal
(which is also the sampling frequency of this discrete-time system). The oscilloscope
measurement is equivalent to applying a filter to the sequence x[n] and measuring the
rms value at the output of the filter. This filter implements the difference equation

y[n] = x[n]−x[n−k] (2.7)

whose transfer function in the Z domain is:

Hk(z) = 1− z−k (2.8)

16

2.4. Measuring phase noise

Loose
quadrature

PLL ADC
+

FFT

LPF phase noise
PSD plot

a(t)

Figure 2.4. Internal structure of a typical phase measurement system.

The transfer function in the frequency domain can be obtained by evaluating the Z
transfer function in the unit circle:

Hk

(
ejωd

)
= (1− cosωdk) + j sinωdk (2.9)

where ωd is now a digital frequency constrained between −π and π. This frequency can
be converted to the analogue frequency fa domain using

ωd = 2πfa
fs

(2.10)

where fs is the sampling frequency. The filter response in the fa domain will of course
be periodic with period fs as for any digital filter. One possible method to calculate
first difference jitter from phase noise PSD data is to filter that data with

∣∣∣Hk

(
ejωd

)∣∣∣2
and then calculate the rms value of the output using the resulting scaled PSD. One
remarkable feature of the first difference filter is that it will attenuate phase noise at
frequencies close to its zeroes, and in particular very low frequency phase noise will not
show up in the result. This is a confirmation of the fact that in many applications, this
type of noise is irrelevant because it shows up as common mode in situations where only
the differences matter.

2.4. Measuring phase noise

For low-noise conditions, we can re-write eq. 2.2 as

x(t) = A(1 +m(t))sinωt+Aϕ(t)cosωt (2.11)

where second-order terms are dropped. The amplitude and phase noise contributions
are now modulating carriers in quadrature, so it is simple to design a device that will
discriminate between them for measurement purposes. Figure 2.4 depicts the internal
structure of such a device.

The role of the loose quadrature phase-locked loop (PLL) is to track the incoming
signal with very low bandwidth, filtering all the high-frequency phase noise we are inter-
ested in studying. More on this filtering action will be explained in section 2.5. Phase

17

2.5. Phase-locked loops

Phase
detector

Loop filter
F(s)

Perfect
VCO

j
i

jVCO

vc

jn

d

d

j
VCO

t
= K vVCO × c

vd = (-)Kd i oj j

VCO noise

j
o

Figure 2.5. Block diagram of a phase-locked loop.

noise of lower frequency than the bandwidth of the loose PLL cannot be measured with
this device. In addition, the PLL has to be set up to generate a signal in quadrature with
x(t) i.e. cosωt and not sinωt so that at the output of the mixer and low-pass filter we
are left with a baseband signal proportional to ϕ(t). Digitization of this signal followed
by Fourier analysis results in a plot of phase noise PSD vs. frequency.

For the cases where very low-noise sources have to be characterized, the noise of the
loose PLL can represent a significant portion of the overall measured noise, therefore
affecting the precision of the measurement. In order to compensate for this, more ad-
vanced signal source analyzers feed the signal to two parallel PLL + mixer + low-pass
+ ADC branches and perform a cross-correlation of measurements. Noise which is un-
correlated between the two branches is attributed to the PLLs and other imperfections
and discarded before displaying the PSD.

One last important item to bear in mind when measuring phase noise with commer-
cial instruments is that measurements often get reported as L(f) which is defined as
Sϕ(f)

2 . This is recommended in IEEE standard 1139.

2.5. Phase-locked loops

Phase-locked loops [12] are an invaluable tool in cleaning up the jitter of clocks,
among many other possible applications. Figure 2.5 depicts the structure of a typical
PLL.

The phase detector (PD) block generates an output voltage vd proportional to the
phase difference between the input and output of the PLL. In Laplace space, its output
is therefore

Vd(s) =Kd (Φi(s)−Φo(s)) (2.12)

18

2.5. Phase-locked loops

The next block after the phase detector is the loop filter, which outputs the control
signal for the Voltage-Controlled Oscillator (VCO):

Vc(s) = F (s) ·Vd(s) (2.13)

The VCO outputs a signal with a frequency proportional to its input voltage. Since
frequency is the derivative of phase, this means that the phase of the signal at the output
of the VCO is proportional to the VCO control voltage:

ΦV CO(s) = KV CO ·Vc(s)
s

(2.14)

Since there are no perfect VCOs, the diagram includes a VCO noise source, con-
tributing phase ϕn. Calculating the output phase ϕo from the two sources in the diagram
(reference input phase ϕi and VCO phase noise ϕn) again in Laplace space gives

Φo(s) =H(s) ·Φi(s) +E(s) ·Φn(s) (2.15)

where H(s) is called the system transfer function, defined as

H(s) = KV COKdF (s)
s+KV COKdF (s) (2.16)

and E(s) is the so called error transfer function, defined as

E(s) = 1−H(s) = s

s+KV COKdF (s) (2.17)

In typical clock-cleaning applications, H(s) is a low-pass filter, while E(s) is
high-pass. Cut-off frequencies are dictated by PLL parameters, and most importantly
the loop filter F (s). The PSD of the phase noise of ϕi will be filtered by |H(s)|2 while
the phase noise PSD of the VCO will be filtered by |E(s)|2. This means that the low
frequency noise in the PSD of ϕo will come from the reference ϕi and the high-frequency
noise will come from ϕn. The transition from one noise source to the other will be at a
frequency determined by the loop parameters. After careful study of the PSDs of ϕi and
ϕn it is the task of the designer to choose a cut-off frequency that will minimize overall
area under the ϕo PSD curve, and consequently time-domain jitter. In typical systems
– like the transmission of a very stable clock over a channel which adds high-frequency
noise – the VCO is worse than the reference at low frequencies and better at high
frequencies. The point in frequency where the two PSD plots (reference and VCO) cross
is in that case an optimum setting for PLL bandwidth, as shown in Figure 2.6.

In Figure 2.5 the phase detector is shown as perfect, with no noise added to it as
for the VCO. In practice, phase detector noise is also a concern, but mathematically it

19

2.5. Phase-locked loops

S (f)
j

H(s) E(s)

f

f

free-running VCO

locked VCO

PLL reference

fLPF

phase-noise
optimized

filter bandwith

Figure 2.6. Optimal choice of PLL bandwidth for jitter-cleaning applications.

|H(j)|w

f

peaking

Figure 2.7. Illustration of transfer function peaking in a Bode plot.

is equivalent to reference noise, so that the above formalism can be applied, replacing
reference noise by reference + phase detector noise.

One important aspect to bear in mind for applications in which many PLLs are
cascaded is that of peaking in the H(s) Bode plot. Peaking is a rise of the magnitude
of H(jω) before it starts its descent at the cut-off frequency (see Figure 2.7). Peaking
is typical in under-damped systems [14]. If many PLLs with the same (or similar) H(s)
transfer function are cascaded, the peaking can be exacerbated and affect phase and
gain margin, ultimately resulting in potential instabilities of the overall system. For this
reason, in cascaded PLL applications, it is better to adjust the PLL parameters so that
the resulting PLL is slightly over-damped.

20

3. Synchronization in White Rabbit

Synchronization in White Rabbit (further abbreviated as WR) results from the com-
bination of IEEE1588-2008 (PTP) [15] with two further improvements: precise knowl-
edge of the link delay model and clock syntonization over the physical layer. This chapter
describes all the components involved in the synchronization process and the practical
synchronization model used in WR.

3.1. The clock synchronization problem

Before starting the discussion of the WR synchronization model, let’s introduce the
mathematical principle of synchronization of two spatially separated clocks. Diagram 3.1
shows a simple, linear model of the clock synchronization problem: There are two clocks:

0 absolute time scale

t

Clock A

(master)
Clock B

(slave)

t t t
A
() = k + bA A t t t

B
() = k + bB B

link latency

dAB

Figure 3.1. The clock synchronization problem.

the master clock which serves as a time reference, and the slave clock which has to
be synchronized with the master clock. The clocks can communicate with each other
through a data link with transmission latency δAB. The clocks operate with speed k

and offset b with respect to an ideal, absolute time scale, hence an ideal clock would
have k = 1 and b = 0. In order to synchronize the clocks, the following two steps must
be performed:
I the rate of the slave clock kB has to be same as the rate of the master clock kA.

This process is called syntonization. In electronics parlance syntonized oscillators
run at the same frequency, but may have different phases. In WR, syntonization is
provided by the physical layer of the network, thanks to Synchronous Ethernet (see
section 3.4).

3.2. Physical network layer

I the slave offset bB must be equalized to the master offset bA in a process called offset
adjustment. WR adjusts clock offsets by using time-stamped packets, Precision
Time Protocol (IEEE 1588) and DMTD phase tracking (see sections 3.3, 3.5.4).
It should be noticed, that the values of kA, kB, bA, bB are not known by any of the

clocks at any moment. These coefficients only express the relation of the time shown by
a particular clock to an ideal time scale.

Once the clocks are syntonized, the master can send its actual time value tA to the
slave. The slave will receive this information δAB later, which is the one-way (master to
slave) latency introduced by the link connecting the two clocks. Knowing the values of
tA and δAB, the slave can calculate the clock offset ∆ using the formula 3.1:

∆ = tA− tB + δAB (3.1)

where ∆ expresses how much the slave clock should add to its time counter to become
synchronized with the master.

This model, however, is not sufficient for a real-world clock synchronization system,
which has to deal with a variety of problems discussed further in this chapter. These
are: varying link latency (3.3, 3.5.4), asymmetry of link delay (3.5.6), properties of data
encoding (3.2, noise and hardware limitations (3.5.5).

3.2. Physical network layer

The accuracy of synchronization in a WR network relies deeply on the properties
of the physical medium and the low-level data encoding. Therefore, this section will
explain the principles of operation of Gigabit Ethernet physical and data link layers.

3.2.1. IEEE 802.3 optical gigabit Ethernet

WR can operate in virtually any synchronous Ethernet-based network, but the best
(sub-nanosecond) synchronization accuracy is currently achievable only with gigabit op-
tical links. Physical layer based on copper (100BaseT, 1000BaseT) can also be used in
segments of the network with less stringent accuracy requirements (30 ns). The high
accuracy implementation presented in this thesis uses the 1000Base-LX profile of IEEE
802.3 (802.3z) [16] optical Gigabit Ethernet operating in full-duplex mode as the trans-
mission medium between nodes and switches. Figure 3.2 shows a typical configuration
of a WR optical link. The medium is standard 9/125 µm single-mode fiber optic cable,
up to 20 km in length (depending on the output power and sensitivity of the optical
transceivers used). Both sides use the same fiber for transmission and reception and
employ wavelength division multiplexing (WDM), so the link can operate in full duplex

22

3.2. Physical network layer

Serdes Serdes
TX TX

RX RX

WR master WR slave

Transmit: 1550 nm

Receive: 1310 nm

Single-mode fiber optic cable
(one fiber per link)

up to 20 km

Transmit: 1310 nm

Receive: 1550 nm

WDM SFP module

Figure 3.2. Physical link between WR nodes.

mode. The master transmits on 1550 nm wavelength, and the slave on 1310 nm. WDM
operation has been chosen for the following reasons:
I deterministic medium asymmetry – the master-to-slave and slave-to-master paths

have identical lengths. The asymmetry comes only from the difference of refraction
factors for different wavelengths (see 3.5.6).

I price – cables and connectors make the biggest contribution to the price of an optical
data link. Using WDM transceivers therefore allows for a 50% reduction of the
cabling costs.

3.2.2. Low-level 1000Base-X encoding

Before reaching the fiber, Ethernet frames need to be properly encoded and serialized
to match the properties of the transmission channel. The low-level data encoding and
decoding process is illustrated in Figure 3.3.

Transmitter

Receiver

PCS frame
formatting

PCS frame
decoding

8B10B
encoder

8B10B
decoder

Deserializer

Serializer

unencoded
data stream
1 Gbps
parallel

1 Gbps
parallel

1 Gbps
parallel

1 Gbps
parallel

1.25
Gbps
parallel

1.25
Gbps
parallel

Clock data recovery
PLL

1:10 PLL

1:10
serial-to-parallel

10:1
parllel-to-serial

RX clock

gigabit TX clock

Link
1.25 Gbit/s
serial

Data stream
to MAC

Data stream
from MAC

Transmit
clock

Receive
clock

Figure 3.3. Encoding and decoding of 1000Base-X serial data stream.

Physical Coding Sublayer (PCS) encapsulation

The first encoding step is the encapsulation of Ethernet frames in the PCS, depicted
in Figure 3.4. The process extends plain Ethernet frames with preambles and start/end
of packet control sequences and generates a special idle pattern when no data is being

23

3.2. Physical network layer

transmitted. The role of this idle pattern is to always keep the link active, which is
necessary to maintain correct operation of the optoelectronics and clock recovery logic
in the receiver. Frame payloads are encoded using 256 data symbols, and the control
sequences utilize the special control symbols listed in table 3.1 The /V/ ordered set,

Figure 3.4. Frame encapsulation in the Physical Coding Sublayer (PCS)

Table 3.1. 1000Base-X control characters
Symbol 8B10B ordered set Description
/C1/ K28.5 / D12.5 / 16-bit config reg Configuration 1
/C2/ K28.5 / D2.2 / 16-bit config reg Configuration 2
/I1/ K28.5 / D5.6 Idle (correcting disparity)
/I2/ K28.5 / D16.2 Idle (preserving disparity)
/R/ K23.7 Carrier extend
/S/ K27.7 Start-of-packet
/T/ K29.7 End-of-packet
/V/ K30.7 Error propagation

not shown in Figure 3.4, is used to inform the receiver that an error occurred during
the transmission (for example an underrun of the TX buffer), and the received packet
should be discarded. /C1/ and /C2/ are used to exchange the device capabilities during
link autonegotiation. /R/ indicates a carrier extension event: during a burst of frames,
the PCS fills the gaps between frames with /R/ symbols instead of /I/ sequences to
keep the carrier active. This applies only to the half-duplex links using Carrier Sense
Multiple Access (CSMA) mode which cannot be used in a WR network.

It’s worth observing that the PCS encapsulation unit also generates a pulse coherent
with the transmission of the /S/ ordered set, which is used to gather WR-compatible
deterministic packet transmission timestamps.

8B10B encoding

The PCS output data stream is fed to the 8B10B encoder, whose role is to adapt
the format of input symbols to match the requirements of the communication channel.
Input data and control symbols are converted into 10-bit words having the following
properties:

24

3.2. Physical network layer

I the maximum bit run length is 5 bits (i.e. there are never more than 5 consecutive
ones or zeros in the encoded stream). This is required by the clock recovery PLL in
the receiver.

I the output data stream must not contain a DC component. This requirement is
fulfilled by using an encoding scheme called “running disparity” to maintain equal
number number of transmitted ones and zeros (see [7]).

I The /K28.5/ symbol which is the part of the /I/ and /C/ sequences is called a
“comma” character. Its bit sequence (0011111010) can never occur in between two
encoded 10-bit symbols. By detecting the comma sequence, the receiver can find the
boundary between subsequent words on the serial link (see Figure 3.5b).

Serializer and deserializer

The serializer converts 10-bit parallel words coming from the 8B10B encoder into
a 1.25 Gbit/s serial data stream which drives a differential (LVPECL, LVDS, CML)
output connected to the fiber optic transmitter. Most serializers use a 10:1 shift register
clocked with a 1.25 GHz clock derived by a built-in PLL from a 125 MHz reference,
as shown in Figure 3.5a. The deserializer recovers the 1.25 GHz bit clock by using a

x 10 PLL CDR Clock
divider

Comma
alignment

1:10 shift
register

10:1 shift
register

Reference
clock

Incoming
data stream

Deserializer
output

Recovered
clock

Recovered
clock

Serial link
1.25 GbpsParallel data

input
Parallel data
output

1.25 GHz 1.25 GHz

125 MHz 125 MHz

/
10

/
10

Serializer Deserializer

.....01000101110001010111 0110110101 110000010101101101011100000101

K29.7
/T/

K23.7
/R/

D16.2 D16.2K28.5
comma

K28.5
comma

invalid data (before comma alignment) D16.2 K28.5

realignment

a)

b)

Figure 3.5. 1000Base-X serializer and deserializer (a) and comma alignment (b)

specialized PLL with phase detector capable of locking onto irregular signal transitions
(for example a bang-bang phase detector [30]) or a digital oversampling clock and data
recovery unit [27]. The recovered high speed clock drives the 10:1 ratio serial-to-parallel
shift register, and after being divided by the serialization factor, it is output from the
deserializer.

The comma alignment unit ensures that the shift register’s parallel output matches
the inter-symbol boundary on the serial input. Upon detection of a unique comma
pattern (which cannot occur between two unaligned symbols), the data word is shifted

25

3.3. Precision Time Protocol (IEEE 1588)

by the necessary amount of bits and the recovered 125 MHz clock is adjusted to match
the inter-word boundary. The alignment process is illustrated in Figure 3.5b.

Note that the recovered clock must always track the serializer’s reference clock. Even-
tual delay may be caused only by the varying link latency. Serdes chips which introduce
clock delays which change during the operation are not suitable for use in a WR network.

8B10B and PCS frame decoder

The 8B10B decoder and PCS decoder reverse the operations done by their counter-
parts in the transmitter and provide raw Ethernet frames to the higher layers of the
network stack. They also perform low-level error checking (detection of invalid 8B10B
symbols and loss of communication). In addition, the receive path PCS outputs a pulse
upon detection of the /S/ symbol which is used for timestamping received packets.

Packet timestamping

As mentioned in section 3.1, clock synchronization requires the knowledge of the link
latency. In packet networks, such as Ethernet, the latency can be measured by analyzing
the packets’ send and receive timestamps.

In order to achieve the maximum possible measurement accuracy, timestamping in
WR is done by the PCS sublayer, before the data crosses clock domains or is passed
to blocks introducing varying latencies (e.g. FIFOs). The timestamps are produced by
a free-running counter gated by the pulses coming from transmitter and receiver PCS
units. The timestamping process is extensively described in section 3.5.3.

3.3. Precision Time Protocol (IEEE 1588)

The Precision Time Protocol (PTP) is an IEEE-standardized (IEEE 1588)
high-precision time protocol designed for use in local area networks [15]. The main aim
of PTP is providing a microsecond-level synchronization in Ethernet-based networks.
Unlike dedicated synchronization systems (such as IRIG-B), PTP does not require a
separate network infrastructure, allowing for mixing precise time information with data
transfers. This approach allows for significant cost reduction (no extra cabling, standard
hardware) with no compromises in performance. Unfortunately, Ethernet is very nonde-
terminisic in terms of latency and communications jitter, as the active elements of the
network (switches, routers, network cards and finally the operating system’s networking
stack) all introduce random and unpredictable latencies as illustrated in Figure 3.6.
PTP overcomes this issue by timestamping the packets used for synchronization at the
physical layer of the network. Hardware-based timestamping minimizes the error of
time measurement by performing it at the point from which the latency to the phys-
ical port is constant or at least possible to estimate with enough precision. PTP can
achieve accuracies of a few microseconds in networks built using standard components

26

3.3. Precision Time Protocol (IEEE 1588)

PTP Hardware

Time stamping
unit

Oscillator

PHY

MAC

30 ns - 1 us

< 20 us

1 - 3 ms

1 - 50 ms

MII

Physical medium

PTP daemon

Network interface driver

OS networking stack (IP, UDP)

User applications
Introduced

jitter

H
a

rd
w

a
re

O
S

 k
e

rn
e

l
U

s
e

r-
la

n
d

N
T

P
ti
m

e
s
ta

m
p

in
g

Figure 3.6. Timestamping in PTP and NTP

(switches, hubs), and better than 100 ns in networks where all active components are
PTP-compliant.

Unlike the popular Network Time Protocol (NTP) which timestamps the packets in a
purely software way, PTP doesn’t impose any real-time constraints on the synchroniza-
tion protocol software, as the priority of the synchronization application no longer affects
the accuracy of timestamping. PTP daemons can therefore run as background processes
on non-realtime operating systems (such as Linux or Windows) with no penalty on the
synchronization accuracy.

The biggest field of PTP applications is in industrial control and automation sys-
tems. PTP support has been integrated into several Ethernet-based field buses such
as Profinet, Powerlink and Ethernet/IP. There is an increasing demand for PTP-based
synchronization from test and measurement, telecom and military users. PTP is also a
base protocol for synchronization in WR.

3.3.1. Synchronization in PTP

The PTP standard defines a distributed master-slave synchronization hierarchy
where the free running oscillator in the slave node is locked to the reference oscillator
in the master node, as shown in Figure 3.7. Network nodes in PTP parlance are called
“clocks”. PTP defines 3 types of clocks:
I ordinary clock (OC) – a single-port device (for example, a network card supporting

PTP) which can be either the source of synchronization (master) or a destination for
synchronization reference (slave),

I boundary clock (BC) – a multi-port device (for example a switch) which bridges
the synchronization from one network segment to another by using its local oscillator
(locked to a remote master node) as a reference for the adjacent nodes. A BC can

27

3.3. Precision Time Protocol (IEEE 1588)

Boundary clock

Ordinary clock
(slave)

Ordinary clock
(slave)

Ordinary clock
(slave)

Transparent
clock

Ordinary clock
(master)

Residency
time correction

Figure 3.7. An example of PTP network

be seen as a number of ordinary clocks integrated into a single device and sharing a
single local oscillator,

I transparent clock (TC) – a multi-port PTP node without a servo-controlled os-
cillator. PTP packets passing through a transparent clock are modified by the TC
hardware to include the packet residency time of the TC (i.e. the difference between
the departure and the arrival of the packet from/to the device). Due to the lack of a
PTP-controlled oscillator, transparent clocks are not susceptible to the chained servo
problem (see 2.5) while still maintaining satisfactory accuracy.
The roles of master and slave clocks are assigned dynamically, depending on the

actual topology of the network and the quality of each clock’s oscillator. If a node
detects that all the clocks in the neighbourhood are worse than its local oscillator or
there are no other clocks connected, it automatically becomes a master, otherwise it
enters slave mode, synchronizing itself to the best available reference. The detailed
master/slave selection scheme is defined in the standard as the Best Master Clock (BMC)
algorithm [15]. As a result of the BMC, the entire network is synchronized to the
best available source. In case of failure of the current master clock, its role will be
automatically taken over by another clock in the network.

As mentioned before, synchronization relies on the measurements of the delay intro-
duced by the link connecting the nodes and the frequency drift of the slave’s oscillator.
Both measurements are done by exchanging Ethernet packets, with the knowledge of
accurate packet transmission and reception timestamps. There are several schemes of
synchronization available in PTP, one of which is illustrated in Figure 3.8. PTP defines
two kinds of messages: timestamped event messages which are used for offset and drift
measurement (marked red in Figure 3.8) and general messages, employed by PTP nodes
to identify other PTP nodes, establish clock hierarchy and exchange data, e.g. times-
tamps, settings or parameters. An Announce Message is periodically broadcast by the
node being in the Master state, carrying information about the master node and the
masters’s clock source quality. Announce messages provide the necessary data for the
Best Master Clock (BMC) algorithm.

28

3.3. Precision Time Protocol (IEEE 1588)

Master
time

Slave
time

Announce

Sync

Delay_Req

Follow_Up

Delay_Resp

Management

t
1

t
2

t
3

t
4

Figure 3.8. PTPv2 message exchange for a two-step End-to-End clock synchronization.

Timestamps (t1...t4) of the event messages (Sync and Delay_Req) are used to cal-
culate the offset and the frequency drift between the master and the slave. As the slave
needs to have knowledge of all 4 timestamp values in order to synchronize itself, the value
of t1 is either embedded into the Sync message directly in the hardware (One-step clock)
or carried by a separate Follow_Up message (Two-step clock). Likewise, the value of
t3 is reported to the slave within the Delay_Resp message. Having the values of t1...t4,
the slave node performs the following procedure:
I Determines the round-trip (master → slave → master) link delay 3.2

delay_coarse= (t4− t1)− (t3− t2) (3.2)

I Calculates the one-way (master → slave) delay 3.3:

one_way_delay = delay_coarse
2 (3.3)

I Corrects the clock offset by subtracting t2 − t1 + one_way_delay from its time
counter

I Maintains syntonization and synchronization of its local oscillator by adjusting its
frequency with a servo keeping the value of t2− t1 +one_way_delay equal to 0.
Sync messages are periodically broadcast to allow the slave to compensate for the

frequency drift of its local oscillator. Clock offset can be measured less often, as (when
the clocks are already syntonized), it depends only on the slow changes in the link delay,
for example induced by the varying temperature. In typical applications the slight
changes in the link delay are usually negligible. Therefore, once the offset is initially
fixed, the synchronization can be kept using only the Sync messages broadcast by the
master node, with no Delay_Req requests being sent by the slave.

29

3.3. Precision Time Protocol (IEEE 1588)

In 2008, the standard was extended and version 2 (PTPv2, IEEE1588-2008) was
published, however incompatible with the original standard. Among the major improve-
ments were:
I Introduction of management messages, allowing for clock discovery and state control,

and providing access to clock’s internal data sets.
I Support for Type-Length-Value (TLV) fields for passing implementation-specific data

associated with PTP messages.
I Possibility for encapsulating PTP packets within Layer 2 (raw Ethernet) frames,

enabling devices such as Ethernet switches to use PTP without a need for an IP
stack.
WR employs PTPv2 for measuring coarse (nanosecond level) link delays through the

timestamped packet exchange mechanism. PTP also serves as versatile transport layer
for all WR-specific calibration and syntonization messages which are encoded in the TLV
fields and management messages. The current WR PTP implementation works only over
Layer 2 (raw Ethernet), although Layer 3 (UDP) will probably also be supported for
compatibility with older PTP slaves.

3.3.2. PTP performance and limitations

The timing performance of every PTP-based system can be expressed with the PSD
of phase noise for the slave’s recovered clock signal (expressing the syntonization perfor-
mance) and the histogram of the master-slave clock offset (see Figure 3.9) – a measure
of synchronization accuracy. PTP had been primarily designed for use in industrial

Figure 3.9. An example of clock offset histogram.

control systems, for which microsecond-level accuracy is satisfactory and there are no
stringent requirements for the jitter. Therefore, achieving sub-nanosecond accuracy and
good phase noise is extremely difficult with standard PTP implementations. The major
limiting factors are the following:

30

3.4. Synchronous Ethernet

I Syntonization based on tracking the difference of Sync message timestamps. As
timestamps have limited granularity (for example, 8 ns for Gigabit Ethernet), the
frequency tracking sensitivity is also limited to a single timestamp granularity unit.

I Recovering a low jitter clock requires either a very stable oscillator in every slave
(such as an OCXO) or an increase in the servo bandwidth which also forces higher
broadcast rate of Sync messages. A large number of PTP messages may interfere
with the determinism requirements imposed by control system protocols.

I Being medium-independent, PTP does not provide any mechanisms for measuring
the asymmetry of the link which is specific to a certain physical layer. Instead, the
synchronization mechanism assumes that the link is perfectly symmetric or that its
asymmetry is constant.

I The minimum achievable offset cannot be better than timestamping resolution.

3.4. Synchronous Ethernet

Ethernet is nowadays the most widely used network technology, both in local and
metropolitan area networks. However, wide are networks, such as SDH/SONET used in
telecommunication systems are based on time-division multiplexing (TDM) techniques.
The original task of these networks was transporting voice signals, but over time they
have been adapted to carry data streams, including Ethernet traffic. TDM networks are
circuit switched – each node is assigned a transmission channel based on time, contrary
to Ethernet where nodes are free to send data whenever they want.

TDM systems work synchronously by using a common reference frequency for the
entire network to manage the time slots and clock the data transfers. On the other hand,
Ethernet devices have independent free running oscillators, as depicted in Figure 3.10.
Differences between data transmit rates of neighbouring nodes are compensated by asyn-
chronous packet buffers. Synchronous Ethernet [18] (abbreviated as Sync-E) extends the
standard with SDH/SONET-like syntonization and a TDM mechanism. Contrary to the
peer-to-peer model of Ethernet, Sync-E imposes a hierarchical network structure with
the top node called System Timing Master (STM). The STM contains the primary clock,
such as an atomic clock or a GPS receiver and uses its output frequency to encode the
outgoing data stream. Slave nodes use PLLs to recover the reference clock from the
incoming data. The recovered clock is used to encode the data streams propagated to
nodes being lower in the system hierarchy and the data stream sent back to the master
node.

Sync-E is a part of WR responsible for syntonizing the clocks. Therefore, the role
of the PTP protocol in a Sync-E network is reduced to measurement and compensation
of the clock offset. Sync-E also facilitates sub-nanosecond synchronization by opening
the door to phase detector technology as a means of measuring delay. Phase shift

31

3.5. White Rabbit synchronization model

Standard Ethernet Synchronous Ethernet

Node 1 Node 2

free-running
oscillator

System Timing Master

primary
reference
oscillator

free-running
oscillator

free-running
oscillator

Node 3

Link 1-2

Link 2-3

Link 1-3

Node 1

locked
oscillatorPLL

REF

Master port

Slave port

Node 3

locked
oscillatorPLL

REF

Slave port

Node 3

locked
oscillatorPLL

REF

Slave port

Figure 3.10. Comparison between standard and synchronous Ethernet

measurements are much easier to implement and deliver better precision than direct
time measurements.

Since Sync-E uses cascaded phase-locked loops to propagate the reference frequency
throughout the network, measures against the peaking effect (see 2.5) must be taken. In
WR networks, the frequency responses of the PLLs are precisely controlled with digital
filters. Also the network topology is restricted to a balanced tree with the Timing Master
being the root node to minimize the PLL chain lengths.

3.5. White Rabbit synchronization model

A WR network is hierarchical timing-wise and flat data-wise (Figure 3.11). WR
switches can have two types of ports: uplink ports, which receive the timing information
from a remote node and downlink ports, propagating the timing to the nodes being
lower in the network hierarchy. Due to the synchronous operation of the physical layer,
the topology of a WR network must be a tree with the System Timing Master (STM)
being the root of the tree. This restriction only applies to the links which provide the
synchronization (marked red in Figure 3.11). Other links can still exist in the network,
but they will be used only for data transfers and will be managed by the standard Rapid
Spanning Tree (RSTP) protocol.

The root node (WR master) takes its clock from an external source (atomic clock,
GPS) and uses it to encode the data streams going to its downlink ports. Each layer
of the switches senses this data on its uplink ports and extracts their local clock from
that data. The phase of the recovered clock is corrected using the precise link delay
obtained by the PTP measurement and DMTD phase detector. The recovered clock is
then passed to the downlink ports and recovered by the next layer of switches/nodes
which propagate it further, and so on, and so forth.

32

3.5. White Rabbit synchronization model

GPS/cesium
reference clock

10/125 MHz

1PPS

UTC timecode

WR master
or WR switch

(configured as a PTP grandmaster)

backup
WR master

and reference clock

WR switch

WR switchWR switch

downlink ports

downlink ports

downlink ports

uplink ports

uplink ports

multiple uplink paths
for timing redudnancy

data-only routes outside
the tree topology, managed
by the Spanning Tree protocol

WR switch

WR switch

WR node WR node

WR node

timing and data routes data-only routes

Figure 3.11. Topology of WR network

There may exist more than one STM in a single network, provided that all STMs
use the same reference clock. In such situation, only the STM designated as the primary
timing master is used, while the others serve as a backup. A node with multiple uplink
ports, such as a WR switch, can therefore receive the timing independently on each
uplink port and seamlessly switch between reference clocks in case of a failure of one of
the synchronization sources.

Such synchronization scheme requires each WR switch to be a PTP boundary clock
(although there are slight differences between PTP and WR boundary clocks, which
do not affect interoperability between WR an PTP gear. See [11] for details). Since
the synchronization takes place only between two adjacent nodes, the WR network can
be seen as a set of independently synchronized point-to-point connections. Hence, the
ability to synchronize a single link automatically provides an ability to synchronize the
entire network.

3.5.1. WR link model

Knowledge of the physical model of links connecting the clocks is a prerequisite for
achieving the required synchronization accuracy. The model of a WR optical link is
depicted in Figure 3.12. Delta values shown in Figure 3.12 express the delays introduced
by various elements of the system. Big deltas (∆txm,∆rxs,∆txs,∆rxm) indicate constant
delays (e.g. the delays which never change when the link is active), while small deltas
(δms, δsm) express the delays which can vary during the operation of the link.

WR employs the clock loopback technique to measure the round-trip phase shift
phaseMM , which is a starting point for determining the precise two-way delay delayMM

33

3.5. White Rabbit synchronization model

Figure 3.12. Model of a WR link (a) and relations between master and slave clocks (b)

and thus the clock offset offsetMS . The clock signal is transferred between the master
and the slave according to the following scheme:
1. The reference clock (1) is used to encode the master’s transmitter output and then

extracted from the data stream at the slave’s receiver. The recovered clock (2) is a
copy of clock (1) delayed by delayMS , where

delayMS = ∆txm+ δms+ ∆rxs (3.4)

expresses the master-to-slave latency introduced by the transceivers and the link.
2. The recovered clock (2) is fed to a clock adjustment unit which shifts its phase by

a programmable value phaseS to obtain the phase-compensated clock (3) – the final
result of WR synchronization.

3. Clock (3) encodes the slave’s outgoing data stream and is recovered at the master
side as signal (4).

4. The master measures the phase shift phaseMM between its outgoing (1) and incoming
(4) clocks using a phase detector.

The value of phaseMM can be expressed as:

phaseMM = {∆ + δms+ δsm+phaseS} mod Tref (3.5)

34

3.5. White Rabbit synchronization model

where ∆ = ∆txm + ∆rxs + ∆txs + ∆rxm and Tref is the period of Gigabit Ethernet 125
MHz reference clock (8 ns).

The goal of the presented model is to calculate the precise value of master-to-slave off-
set offsetMS by combining a coarse timestamp-based round-trip delay 3.3 with precise
phase measurement phaseMM .Once the offset is computed, the WR slave can phase-shift
its recovered clock (deriving phaseS from offsetMS) to match the phase of the master
clock, completing the synchronization. Determining the precise offset, however, is not a

Figure 3.13. WR synchronization flow

trivial task. Figure 3.13 shows the steps needed to achieve and maintain synchronization
of a single WR link. The synchronization process can be split into two parts:
I initial synchronization, which determines the value of offsetMS and fixes the

slave’s phase shift to compensate the offset.

35

3.5. White Rabbit synchronization model

I phase tracking which monitors the changes of phaseMM over time and updates the
phase shifter in the slave to follow these changes and sustain synchronization.

3.5.2. Link detection and syntonization

During the first two steps of the synchronization flow 3.13, a syntonized WR connec-
tion is established. Drawing 3.14 shows the order of hardware operations and message
exchanges which result in a syntonized link. At the initial moment, the master and the

Master
time

Slave
time

ANNOUNCE

LOCK

SLAVE_PRESENT

LOCKED

No valid data pattern on the wire

Slave sets up its clock recovery
PLL and waits until it is locked

Physical connection OK

L
in

k
 d

e
te

c
ti

o
n

S
y

n
to

n
iz

a
ti

o
n

Figure 3.14. WR Link detection and syntonization

slave are not connected to each other. Their PHYs are transmitting an Ethernet idle
pattern (see 3.2.2), but are not receiving any meaningful bitstreams. As soon as the
physical connection is present, the PHYs will start receiving valid idle patterns and the
Ethernet link will become active (see [16] section 36.2.5.2.6). Presence of a valid physical
link will trigger the following sequence:
1. The master starts broadcasting ANNOUNCE messages to look for a WR slave,
2. Eventually, the slave will respond with a SLAVE_PRESENT message, indicating

that it supports WR. If no response has been received within a predefined time, the
master assumes that the slave is not WR compatible and aborts the synchronization
process,

3. The master issues a LOCK message, commanding the slave to begin recovering the
clock from its received data stream,

4. The slave sets up its PLL to use the RX clock as a reference and as soon as the PLL
is locked, responds with a LOCKED message.

Upon successful completion of the above process, both nodes are syntonized and the
delay measurements can begin.

36

3.5. White Rabbit synchronization model

3.5.3. Coarse delay measurement

The coarse delay measurement produces a set of timestamps t1...t4 which are ob-
tained using the PTP End-to-End, two-way clock method as shown in fig. 3.8. The
timestamps are generated in the hardware with a circuit depicted in fig. 3.15, guaran-
teeing single-cycle timestamping accuracy, which is necessary for reliably merging the
coarse delay with the phaseMM phase shift during fine delay calculation. Timestamps

reference clock (master)
compensated clock (slave)

rising edge timestamp

falling edge timestamp

Pulse
extender

Timestamp
registers

rising edge up counter
0 ... 124999999

falling edge
register

asynchronous
time stamp
trigger (from PCS)

D Q

D Q

D Q D Q

ENA

ENAD Q

D QD Q

D QD Q

Q

D

Q

Legend: rising edge-synchronous falling-edge synchronous asynchronous reference clock

CNTR_R

CNTR_F

SYNC

DREG_R

DREG_F1 DREG_F2

Synchronization
chain

Edge detect

Figure 3.15. Structure of a WR timestamping unit (TSU)

in WR are taken when the PCS detects a Start-of-Frame Delimiter (SFD) character in
the incoming (RX timestamps) or outgoing (TX timestamps) data stream (see 3.2.2).

Let’s first focus on the blocks marked blue in fig. 3.15. Each time an SFD character
is detected, the PCS produces a timestamp trigger pulse which causes the timestaming
unit to take a snapshot of the free running counter CNTR_R with the D-type register
DREG_R. The counter is counting from 0 to 124999999 which (given the reference clock
frequency of 125 MHz) gives a period of one full second.

The counter CNTR_R works synchronously to the reference clock (master side,
signal 1 in fig. 3.12) or the compensated clock (slave side, signal 5). Since RX trigger
pulses come from different clock domains (2 or 4), they need to be synchronized to the
reference clock with a chain of D flip-flops (SYNC). Single-cycle long trigger pulses are
widened by the pulse extender before going to the synchronizer chain to ensure that
no pulses are missed due to the metastability of synchronizer flip-flops. The counter
value is latched in register DREG_R on the rising edge of the synchronizer output. TX
timestamp triggers, which are generated within the reference clock domain (clocks 1 or
5) also pass through a synchronizer chain to obtain identical trigger reaction latency.

Unfortunately, due to the jitter of clock signals, crossing clock domains can make
the gathered timestamps useless by causing a random ±1 LSB error when the RX clock
and the reference clocks are almost in phase. The problem is illustrated in figure 3.16

37

3.5. White Rabbit synchronization model

Dashed lines show the transitions of ideal (jitter-free) clocks. If the jitter is neglected,
the reference clock transition should be slightly ahead of the RX clock transition and
the gathered timestamp should be equal to 2. However, if the clocks are jittery, the
transitions may sometimes occur in reverse order, producing an erroneous timestamp of
value 1. One possible way of addressing this issue is to take RX timestamps on both

reference clock

CNTR_R
value

timestamp
value

timestamp
trigger clock

1 2 3

phaseMM

S

(master)

(slave)f

1 - ERROR 3 - OK

(should be 2)

Figure 3.16. Timestamping errors caused by clock jitter

reference clock edges. The falling edge part of the TSU is marked pink in 3.15. It does
not have an independent counter – instead, the current value of the rising edge counter
is latched in register CNTR_F on the falling edge of the reference clock, making the
CNTR_F a copy of CNTR_R delayed by a half of the clock period. This method
ensures that at least one of the timestamps is valid at any moment (see 3.17). The
correct timestamp is chosen depending on the current phase shift between clocks (see
section 3.5.5). In order to simplify the hardware design, the presented TSU can only

reference clock

RX clock

trigger

rising edge
counter

falling edge
counter

timestamp

f 0~
O

f 0~ 18
O

...... ...1 2 3 4 N N+1 N+2

........... 1 2 3 4 N N+1 N+2

valid falling edge valid rising edge

Figure 3.17. Dual-edge timestamping in WR

measure the sub-second part of PTP timestamps. The UTC part is appended in the
software using the algorithm shown in listing 3.1.

Listing 3.1. Producing UTC timestamps� �
timestamp tstamp = get_hardware_timestamp () ;
time t = get_utc_time () ;

// check i f t h e r e was a t r a n s i t i o n o f the UTC counter between the

38

3.5. White Rabbit synchronization model

// genera t ion o f the timestamp and i t s readout by the so f tware
i f (t . m i l l i s e c ond s < tstamp . r i s ing_edge)
tstamp . seconds = t . seconds − 1 ;

else
tstamp . seconds = t . seconds ; 	� �

3.5.4. Digital DMTD phase detector

The fine delay measurements in WR are based on a Dual Mixer Time Difference
(DMTD) phase detector. Therefore, in this section a short introduction to DMTD
technology will be presented. Figure 3.18 shows an analog DMTD system [9]. Let’s

Figure 3.18. Structure of an analog DMTD phase detector

assume that its input clocks a(t) and b(t) have identical amplitudes and frequencies
equal to fclk. The phases of both clocks are respectively φa and φb. The clocks are
multiplied by the mixers with the signal c(t) of frequency foffset and phase φoffset. The
multiplication result can be expressed as:

a(t) · c(t) = cos(2πtfclk +φa) · cos(2πtfoffset+φoffset)

= 1
2cos(2πt(fclk +foffset) +φa+φoffset) (3.6)

+ 1
2cos(2πt(fclk−foffset) +φa−φoffset) (3.7)

Term 3.6 has higher frequency than the multiplied signals and it’s removed by the
low-pass filter, leaving only the low-frequency term 3.7. The downconversion process
changes the frequency of the signals, but does not change their phase difference. There-
fore, if the offset frequency foffset is close to the input signal frequency fclk, the phase
shift can be measured by counting the time between the rising edges of the downcon-
verted clocks. For example, a reference clock of 125 MHz and an offset clock of 124.99

39

3.5. White Rabbit synchronization model

MHz will produce an output signal of 10 kHz. At such frequencies, the phase shift can
be very accurately measured using a simple counter.

Analog DMTDs provide excellent resolution and linearity, at the cost of several
external discrete components (mixers and filters), which can be troublesome, especially in
multi-port applications such as the WR switch. Fortunately, the analog mixing operation
can be transformed into a digital sampling operation, resulting in a digital DMTD
detector, shown on fig. 3.19 In a Digital DMTD (DDMTD) [19], the input signals are

Figure 3.19. Structure of a digital DMTD phase detector

square waves, the mixers are replaced with simple D-type flip-flops and the offset clock is
generated with a PLL from one of the input clocks. The sampling operation performed
by the flip-flops can be mathematically proved to be equivalent to analog mixing (3.7),
but the principle of a DDMTD can be explained in a more intuitive way. Figure 3.20a

f

n = 4cycles

input A

output A

output B

input B

offset clock
(N = 8)

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cm

0 1 2 3 4 5 6 7 8 9 0
1/20

a)

b)

bars in line
- output transition

millimeter scale
- input clock

vernier
- offset clock

Figure 3.20. A vernier (a) and signals generated by DDMTD (b)

shows a vernier caliper. It has two scales - the big millimeter scale and a small vernier
scale, with the units slightly smaller than the main scale. For a typical caliper, the
vernier scale is split into 10 intervals with 4.9 mm spacing. If the length of the measured
object has a fractional part, one of bars on the vernier scale will be in line with one of

40

3.5. White Rabbit synchronization model

bars from the main scale. Translating to the language of electronics, the main scale is
the input clock where each interval represents one cycle, the vernier scale is the offset
clock and the transitions in the DDMTD output signals occur when bars on both scales
are aligned. An example of signals produced by a DDMTD with N = 8 is shown in fig.
3.20b. The output phase shift is proportional to the input phase shift φ by a factor of
(N + 1). A general relation between the phase shift and the cycle interval between the
DMTD outputs can be expressed as:

φ[ns] = ncycles
N + 1 ·

1
fin

(3.8)

Digital DMTDs have all the advantages of their analog counterparts while requiring
only one external component (the oscillator producing the offset clock) which is shared
among all measurement channels. This opens the way for low-cost FPGA implementa-
tions. If a picosecond-level accuracy is not required, even a PLL integrated inside an
FPGA can be used, eliminating all external components. In practical DDMTD imple-

Figure 3.21. Glitches in the DMTD output caused by clock jitter

mentations, the output signals need to be additionally conditioned as the input clock
jitter can introduce glitches, as shown on fig. 3.21a. More details about the deglitching
and postprocessing algorithm can be found in section 4.3.5.

3.5.5. Fine delay measurement

Having the knowledge of PTP timestamps and round-trip phase shift phaseMM , we
can calculate the precise round-trip delay delayMM . The calculation is performed in two
steps:
I The accuracy of PTP timestamps t2 and t4 is enhanced beyond a single clock cycle

using the knowledge of the round-trip phase phaseMM and the slave PLL setpoint
phaseS . As a result, precise timestamps t2p and t4p are obtained.

I The fine round-trip delay is calculated using the standard PTP formula:

delayMM = (t4p− t1)− (t3− t2p) (3.9)

41

3.5. White Rabbit synchronization model

Only the reception timestamps need to be enhanced, as they are generated within
clock domains asynchronous to the reference (or compensated) clock (see table 3.2).
Transmission timestamps are always integer because packets are transmitted and times-
tamped using the same clock.

The flow graph of the algorithm used to merge PTP timestamps with phase mea-
surements is shown on fig. 3.22. Figure 3.23 depicts sample measurements of inputs and
results of the enhancement algorithm for t4p timestamps, where the varying link delay
was simulated using the slave’s phase shifter.

Table 3.2. Timestamping clock domains

Timestamp Origin Trigger clock Timestamping clock Correction
t1 Master TX reference (1) reference (1) 0
t2p Slave RX slave recovered (2) compensated (3) −phaseS
t3 Slave TX compensated (3) compensated (3) 0
t4p Master RX master recovered (4) reference (1) +phaseS

Figure 3.22. Algorithm for enhancing coarse timestamps with DMTD phase.

42

3.5. White Rabbit synchronization model

The first step of the algorithm addresses the problem of glitches in RX timestamps,
by choosing either the rising or falling edge timestamp depending on the phase between
the RX clock and the reference clock. The key parameter of this step, φtrans provides
an approximate value of phaseMM at which a transition should occur in the value of t4r.
In fig. 3.23, it is equal to 6.6 ns - it’s the approximate intersection point of phaseMM

(blue, sawtooth-like trace) and the transition of the rising edge timestamp (red trace).
The value of φtrans is a device-specific constant. It can be determined once during the
factory calibration of a WR device or measured upon every startup by sweeping a full
clock period using the built-in phase shifter and searching for a transition in the RX
timestamp value.

If the actual value of phaseMM lies within a ±25%Tref range from the transition
point φtrans (green zone in 3.23), the algorithm will use t4f timestamp, otherwise t4r
timestamp will be taken (red zone). Note that because phaseMM is bounded to

[
0,Tref

)
,

the range checks must be aware of the jump in the phase between Tref and 0.
The second step checks if the phaseMM value is ahead of the transition point φtrans,

and eventually increases the chosen timestamp by a full cycle (Tref). That ensures
the transition in t4 will always occur when phaseMM = φtrans, eliminating the risk of
transition glitches.

The last part of the algorithm simply adds the picosecond part (which is the DMTD
phase corrected with the transition offset φtrans) to the coarse deglitched timestamp t4.
If the resulting picosecond part (φ) is negative, an additional full cycle is added to the
result. The final output of the merging algorithm is shown in 3.23 as the thick navy
trace. The enhancement operation for t2 timestamp is done in a very similar way by
replacing t4 with t2 and phaseMM with phaseS . Note that changing the slave’s phase
shift phaseS will result in a change of the values of both t2p and t4p (see table 3.2).
Increasing phaseS by a certain δ will cause t4p to also increase by δ (assuming that the
link delay stays constant). Simultaneously, the value of t2p will be decreased by the same
amount, as for the slave’s RX timestamps, the timestamping clock is phaseS ahead of
the trigger clock (so if the phase shift is increased, the timestamp value goes down).
Therefore, the calculated fine delay is not affected by the changes of phaseS :

delayMM = (t4p− t1)− (t3− t2p) = t4p�����+phaseS− t1− t3 + t2p�����−phaseS (3.10)

3.5.6. Link asymmetry estimation

In order to compute an accurate master-slave offset, one must determine the asym-
metry of the link delay. This asymmetry cannot be measured directly (as a difference
between the overall M-S and S-M delays), as it would require the nodes to be synchro-
nized prior to the measurement. Therefore it is only possible to estimate the asymmetry

43

3.5. White Rabbit synchronization model

Figure 3.23. Example of t4p timestamp enhancing.

from round-trip delay delayMM , using the knowledge of the properties of the components
constituting the link.

In the WR optical link model, the following sources of asymmetry were taken into
consideration:
I Propagation delays of electronic components and PCB traces (circuit asymmetry),
I Asymmetry of optical transceivers (SFPs),
I Difference between TX and RX wavelengths in the fiber,
I Internal structure and clocking of the PHY (SerDes) chips.

Figure 3.24. Delay asymmetries in WR optical link.

44

3.5. White Rabbit synchronization model

Figure 3.24 shows the reference asymmetry model used in WR devices. The device’s
asymmetric delays (as shown in fig. 3.12) are expressed as sums of circuit, SFP and
PHY delays between the phase detector inputs (the PD measuring deltaMM on the
master side and the PD in the phase shifting PLL on the slave side) and the SFP optical
input/output. The fiber asymmetry is compensated separately in the slave’s PTP servo.

∆tx(m/s)) = δTX_PHY (M/S) + δTX_CIR(M/S) + δTX_SFP (M/S) (3.11)

∆rx(m/s) = δRX_PHY (M/S) + δRX_CIR(M/S) + δRX_SFP (M/S)

Circuit and SFP asymmetry

Circuit asymmetry stems from differing PCB trace lengths, propagation delays of the
electronic components of the clock distribution system and FPGA logic cell placement
and routing delays. SFP asymmetry is a result of different reception and transmit delays
between the electrical and optical ports of the SFP transceiver.

These asymmetries can vary with changes of the device’s operating conditions (i.e.
temperature, supply voltage). Depending on the synchronization accuracy requirements,
they can be:
I Treated as time-invariant and measured once during factory setup.
I Actively compensated, following the changes in temperature and/or supply voltage

read from built-in sensors (requires a model of delay vs. temperature and voltage),
I Eliminated by building a system where both master and slave have identical (or zero)

asymmetry and operate in similar conditions.
The last method is particularly useful for compensating the delays inside the FPGA

on the way between the PHY (oscillator) and the phase detector, as they cannot be
externally measured during the factory calibration process. They are also significantly
affected by temperature and voltage changes. Therefore, the only practical way of dealing
with the FPGA part of the circuit asymmetry is to equalize the delays on all phase
detector inputs. This can be done by constraining the routing delays or manually placing
and routing the phase detector block. This approach also allows for reducing the impact
of the temperature-voltage changes on the asymmetry to a negligible value, as two equal
paths placed next to each other would have very similar temperature/voltage delay
coefficients.

SFP asymmetries can be compensated in a similar manner by choosing pairs of
SFP transceivers whose TX and RX delays differ by similar values (i.e. δTX_SFPM −
δRX_SFPM = δTX_SFPS− δRX_SFPS). This can be done in a laboratory system where
all other asymmetric delays are already compensated by selecting SFPs that together
give minimum clock offset.

45

3.5. White Rabbit synchronization model

WDM fiber asymmetry

As mentioned in section 3.2, WR uses different wavelengths for transmitting and
receiving the data (for example 1550/1310 nm). Due to chromatic dispersion of the
fiber, the refractive indexes for these wavelengths are slightly different, causing different
propagation speeds (and thus, different delays) between the master and the slave.

The refractive index at a given wavelength can be derived using Sellmeier’s equation
[4] (3.12):

n2(λ) = 1 + B1λ2

λ2−C1
+ B2λ2

λ2−C2
+ B3λ2

λ2−C3
(3.12)

where Bi and Ci are material-specific coefficients.
For a standard G.652 telecom fiber, the refractive indexes are respectively: n1550 =

1.467 and n1310 = 1.466. In order to simplify the asymmetry calculations in the hardware,
the WR specification [11] defines a custom fiber asymmetry coefficient 3.13 expressing
the ratio between the M-S and S-M fiber propagation delays:

α = δms
δsm
−1 = n1550

n1310
−1 (3.13)

Unfortunately, refractive indexes may vary slightly between different fiber manufac-
turers, making the direct calculation of α unreliable. WR can solve this problem by
characterizing the fiber asymmetry using laboratory measurements of delayMM (done
by PTP) and clock offset offsetMS (done using an oscilloscope). The measurements
are performed when all the other asymmetries are already compensated. The value of α
3.15 is calculated by solving equation system 3.14:

delayMM = δms+ δsm+ ∆

offsetMS = δms−δsm
2

(3.14)

where ∆ accounts for all fixed delays in the path (i.e. ∆txm + ∆rxs + ∆txs + ∆rxm).
Substitution of δms and δsm with the results of 3.14 gives the final value of α:

α = delayMM −∆ + 2 ·offsetMS

delayMM −∆−2 ·offsetMS
(3.15)

Transceiver asymmetry

Transceiver asymmetry is a result of the internal structure of the SerDes’s circuitry.
Most of the SerDes chips nowadays are optimized for low power consumption and fast
locking to the incoming data stream. Unfortunately, because of these optimizations,
PHYs may not keep constant transmit/receive latencies. The problem is illustrated in
fig. 3.25. PHY asymmetry manifests itself as a random latency between the rising edge
of the TX/RX clock and the inter-symbol boundary in the transmitted (received) serial

46

3.5. White Rabbit synchronization model

Figure 3.25. Random delays in gigabit SerDes devices (a) and blocks causing them (b).

data stream. In most PHYs, this latency can be different for each PLL/CDR lock cycle,
but once the PHY is locked, the delays shall remain constant. PHYs whose TX/RX
delays can change when the link is active are unsuitable for WR devices.

In the PHYs which have been evaluated for usability in WR hardware (TLK1221 from
Texas Instruments and Virtex-6/Spartan-6 GTP transceivers), the following random
delays were identified:
I RX alignment latency, observed in PHYs which do not correct the RX clock phase

when aligning to the inter-symbol boundary (red, observed for Xilinx GTP),
I RX latency resulting from the internal structure of the digital oversampling CDR

(green, observed for TLK1221),
I TX latency caused by the clock divider between the internal PLL and the

parallel-to-serial register (blue, observed for TLK1221).
Alignment latency can be measured every time the link goes up by disabling automatic
comma alignment and bit-shifting the unaligned output data until a valid 8B10B code
sequence is detected (bitslip trick, see [20]). Compensation of the latter two latencies,
however, requires additional calibration logic. An example method (used in the WR
switch) is shown in fig. 3.26. The PHY transmit path is fed with a sequence of K28.5
characters (1111100000), effectively producing a 125 MHz square wave on the serial
outputs. The phase shift between the TX clock and the output bitstream can be mea-
sured using a DDMTD phase detector, giving the value of the TX latency. The same
method can be used to measure the RX latency by commanding the link partner to
send the calibration pattern. Note that since the K28.5 character contains a comma (5
consecutive ones), a burst of subsequent K28.5 symbols will cause improper operation

47

3.5. White Rabbit synchronization model

Figure 3.26. PHY latency measurement using calibration patterns.

of the PHY’s comma alignment unit. Therefore, comma alignment must be disabled
during the calibration process.

3.5.7. Establishing and maintaining synchronization

Having obtained the values of round-trip delay delayMM and link asymmetry, we
can calculate the one-way master to slave delay delayMS by solving equation (3.16):

delayMM = ∆ + δms+ δsm (3.16)

where ∆ = ∆txm + ∆rxs + ∆txs + ∆rxm. Substituting δsm with 3.13 and solving for
δms, we obtain the one-way fiber delay 3.17:

δms = 1 +α

2 +α
(delayMM −∆) (3.17)

which after adding the circuit, SFP and PHY asymmetric delays present on the
master to slave path gives the final master-slave delay 3.18 and offset 3.19:

delayMS = 1 +α

2 +α
(delayMM −∆) + ∆txm+ ∆rxs (3.18)

offsetMS = t1− t2p−delayMS (3.19)

The value of offsetMS is the input for the slave’s offset adjustment algorithm which
controls the slave’s clock servo. The flow diagram of the algorithm is shown in fig. 3.27a
and an example servo design can be found in fig. 3.27b. The algorithm assumes that
the frequency has been already syntonized by means of Sync-E and only the clock offset
needs to be corrected. Offset correction is split into 3 steps:
1. UTC time adjustment: the UTC counter in the servo is increased (or decreased)

by the number of full seconds 3.20 in offsetMS :

corrutc = boffsetMS

1 s c (3.20)

48

3.5. White Rabbit synchronization model

Figure 3.27. WR slave offset adjustment (a) and clock servo (b)

2. Clock cycle counter adjustment: The reference clock cycle counter, which pro-
duces the PPS signal is adjusted by the number of full Tref (8 ns) cycles 3.21.

corrcnt = boffsetMS− corrUTC
Tref

c (3.21)

3. Phase adjustment: The slave’s phase shifter is adjusted with the remaining
sub-cycle part of the offset 3.22

corrphase = offsetMS− [offsetMS] (3.22)

Voilà! Now the slave’s clock and PPS signals are synchronized to the master with
sub-nanosecond accuracy. Since the offset can vary with operating conditions, it is
measured at regular intervals and the difference between subsequent measurements is
added to slave’s phase shift to compensate for phase drift:

corrphase = offsetMS−offsetMS_previous (3.23)

Because the phase drift is mainly caused by temperature variations, the rate of subse-
quent adjustments can be very low, even in the scale of a single adjustment per hour.

Note that the way corrphase is calculated requires the phase shifter to be able to
change the phase relatively by any arbitrary value with no "jumps" in the signal when
the value of corrphase crosses the inter-cycle boundary. For example, one can use a
PLL with a phase detector capable of handling wrap-around phase transitions, but not
a programmable delay line. An example design of such phase detector and PLL is
described in section 4.3.7.

49

3.6. Integration of White Rabbit into PTP

3.6. Integration of White Rabbit into PTP

As mentioned in section 3.3, WR extends the PTP standard with several custom
messages to enable frequency syntonization and PHY delay calibration. These mes-
sages utilize the user-definable Type-Length-Value fields in the PTP version 2 An-
nounce and Management messages. A WR master is therefore fully compatible with
any PTPv2-compliant device.

Figure 3.28 shows the order of the PTP message exchanges during all the phases of
the synchronization process, indicating which messages are standard PTP (black) and
WR-specific (red). Note that the calibration stages involving the exchange of calibration
patterns are only required if the remote node’s PHY has type 2 (CDR) asymmetry.

The drawing is intended to complement the synchronization flow described in the
chapter and give the reader an overview of the entire WR-PTP synchronization process.
A detailed description of the data flow, packet formats and master’s and slave’s state
machines falls out of the scope of this thesis. A complete description of the protocol can
be found in the WR specification [11].

50

3.6. Integration of White Rabbit into PTP

Figure 3.28. PTP message flow during WR synchronization.

51

4. The White Rabbit Switch

The White Rabbit Ethernet Switch, further abbreviated as WRS, is the central
component of every WR network, allowing for multiplexing high precision timing and
packet data in a single physical connection. This chapter presents a very brief description
of the hardware, FPGA and software design of version 2 of the WRS. Since the scope of
this thesis is limited to time and frequency transfer, the focus is on the components of
the WRS which play a significant role in these processes. Blocks having little impact on
the synchronization are described only to an extent necessary to explain their function
in the design of the WRS.

Due to the large size of the WRS codebase (over 20 pages of electrical schematics, 3
complex PCB layouts and more than 80000 lines of VHDL/SystemVerilog/C code), the
chapter contains no detailed technical documentation of the WRS in printed form. All
WRS design files are available at [31].

4.1. Overview

The WRS is a full-duplex, non-blocking, manageable gigabit Ethernet switch
(IEEE802.1D Bridge) with 10 IEEE802.3z SFP (mini-GBIC) ports, supporting both
fiber and copper connections. Unlike typical Ethernet switches, the WRS provides a
set of enhanced features to fit the requirements of high performance control and timing
systems, such as:
I Sub-nanosecond IEEE1588/Sync-E synchronization engine.
I Full routing latency determinism for a certain class of packets (expressed as a fixed

upper boundary in the packet residency time).
I 8 priority levels with independently configurable routing mode (store and forward

and cut-through).
I Improved network redundancy protocols: hardware-assisted Spanning Tree Protocol

allowing for microsecond-range recovery of a broken link.
The functional diagram of the WRS is shown in Figure 4.1. The WRS communicates
with other devices using the following interfaces:
I 2 uplink ports (WR slaves), receiving the time and frequency reference from the

upper layers of the network. One of the uplink ports can be designated as primary
PTP slave, while the other one can serve as a backup timing receiver.

4.2. Hardware

Figure 4.1. Interfaces and functionality of WRS.

I 8 downlink ports (WR masters), propagating the timing to other switches or
nodes. The distinction between the uplink and downlink ports applies only to the
synchronization hierarchy, because only uplink ports can recover the Sync-E carrier
clock. Data-wise, all the ports are identical as in every Ethernet switch. All the
ports are also equal for the non-synchronous PTP implementations.

I External 10 MHz, 125 MHz and PPS inputs, allowing the WRS to work as
a WR/PTP grandmaster by taking the reference timing from an atomic clock or a
GPS receiver. The 125 MHz input can be used as a direct clock input for the PHYs
for measurement and testing purposes.

I PPS and 125 MHz outputs providing the slave’s in-phase recovered clock.
I 100BaseT Ethernet port foreseen for the device management and administration

using an external (non-WR) network.
I Multi-purpose RS232 port, which can be used to receive or output the UTC

time-of-day information or as a management serial console.
All the ports listed above, except the downlinks, are accessible at the device’s front panel.
Access to downlink lanes depends on the particular hardware configuration (stand-alone
or with a backplane – see the following sections).

4.2. Hardware

4.2.1. Hardware platform

The WRS is designed as a microTCA Management Carrier Hub (MCH) card [24],
due to the high throughput, compact size and low cost of microTCA backplanes com-
bined with a vast set of features, such as redundant power supply and sophisticated
remote management. Because of the insufficient amount of space available on a single
microTCA card, the WRS MCH module is a “sandwich” of two PCBs stacked with
dense multipin board-to-board connectors as shown in Figure 4.2a. The PCBs are:

53

4.2. Hardware

I the main PCB (4.2.3), which hosts the packet processing part of the switch (FPGA
and CPU with necessary external memories), as well as the power supply block for
the entire module.

I the timing PCB (4.2.4), carrying the analog timing inputs, clock recovery system
(PLLs and oscillators) and the uplink PHYs with SFP sockets. The timing board
also delivers the reference clocks to the microTCA backplane.

Figure 4.2. WRS module assembly (a) and photograph (b).

Note that some connectors are not placed on the PCB which hosts their drivers (for
example the RS232 port or the SFPs). Such layout was necessary to fit all the connectors
on a very limited space of a MCH card front panel.

microTCA MCH operation

The WRS was originally designed to operate in a microTCA crate as an MCH mod-
ule. The main role of the MCH is providing a gigabit Ethernet link and a set of clock
signals to each Advanced Mezzanine Card (AMC) in the crate. The MCH must also
implement crate management services via the Intelligent Platform Management (IPMI)
Interface [17]. The WRS supersedes these requirements by:
I providing deterministic Ethernet links for up to 8 AMC cards through the Fabric

A (a mandatory lane in every microTCA backplane, dedicated for a GbE link).
I delivering timing signals in the form of a 125 MHz reference clock, transmitted using

Telco Clock A lanes and an encoded PPS/timecode signal propagated on Fabric D.
Figure 4.3 shows an example of a microTCA-based WR system, where the timing

receiver capabilities of the WRS are used to derive the time base in an A/D converter

54

4.2. Hardware

Figure 4.3. WRS operating in a microTCA crate.

AMC card and the Ethernet part deals with the readout of the acquired data. The
same crate can host other AMC cards communicating between themselves using WR
Ethernet links and spare lanes in the backplane (“fat pipes”). In such way, one can build
compact and low-cost distributed data acquisition systems synchronized to a common
clock source.

Standalone operation

The microTCA architecture, however, may become an obstacle if only the switch-
ing functionality of the WRS is required because of the still significant cost of mi-
croTCA backplanes. The MCH module can be therefore used in conjunction with a
simple mini-backplane to build a standalone 10-port Ethernet switch, as shown in Fig-
ure 4.4.

RJ45

RS232

MCH front panel

uplink 0

status
LEDs

uplink 1

d.link 0 d.link 1 d.link 2 d.link 3 d.link 4 d.link 5 d.link 6 d.link 7

WhiteRabbit
10-port switch

AMC connector

Figure 4.4. Standalone WRS with a mini-backplane.

4.2.2. System design

Having presented the working platform, we can proceed with the description of the
MCH hardware. The WRS is a fairly complex design, comprising multiple FPGAs and

55

4.2. Hardware

CPUs and a number of discrete ICs. Figure 4.5 shows the general block schematic of
the MCH, showing all the major components and the interfaces connecting them.

The MCH is built around the two FPGAs: the big main FPGA (4.2.3), taking
care of the packet processing and the smaller timing FPGA (4.2.4) which implements
the PLLs for the timing system. The chips communicate with each other via a simple
low-speed serial link. Both FPGAs are controlled by the main CPU (4.2.3), an ARM
processor running the Linux operating system and a set of applications which govern all
the aspects of the WRS operation.

The second CPU shown in the diagram (watchdog MCU) is a small ARM7 mi-
crocontroller, which implements the IPMI stack for microTCA system management and
ensures the proper operation of all the logic by means of a challenge-response mecha-
nism. The watchdog also monitors the state of the power supplies and the temperature
in various spots on the PCB. The main CPU can configure the watchdog using an SPI
interface.

Other components worth noticing are the 10 1000Base-X PHYs and the ZBT (Zero
Bus Turnaround) static memory, connected to the main FPGA. There is also a separate
backplane clock fanout and a timing line driver, whose role is propagating the reference
clock and PPS/timecode to all AMC slots in the crate. The description of the timing
components is presented in more detail in section 4.2.4.

4.2.3. Main board

The main board hosts the “digital” part, downlink port PHYs and the power supply
of the MCH. Drawing 4.6 shows a snapshot of the main PCB layout with the annotated
blocks from the system diagram 4.5. Both PCBs of the MCH have been designed using
a 6-layer stackup with 3 signal layers, 2 power planes and one mixed power/signal layer
(the stackup, from the top to bottom is: S1, Pwr, S2, Mix, Gnd, S3). Such PCB stackup
allowed for achieving good signal integrity and low cost of the board.

Main FPGA

The central chip of the main board is the main FPGA – Altera’s EP3C120 in BGA780
package, the biggest Cyclone-3 FPGA series model. This particular chip has been chosen
because of the largest amount of the built-in RAM resources (necessary for the packet
queues) in the low-cost FPGA segment. The main FPGA is configured directly by
the main CPU, using the Passive Serial bootup mode. The same method is used to
boot the timing FPGA. There is no dedicated configuration memory, the bitstreams are
kept as regular files in the main CPU flash memory. The FPGA is powered from 3
different supplies: +1.2 V for the core, +2.5 V for the PHY interfaces and +3.3 V for
the remaining I/O pins.

The FPGA interfaces with the following components:

56

4.2. Hardware

Figure 4.5. WRS MCH system block diagram.

57

4.2. Hardware

Figure 4.6. WRS MCH main board layout.

I the main CPU (EBI1 controller), using a 32-bit asynchronous bidirectional bus with
external wait states. The blocks inside the FPGA are therefore a part of the CPU’s
memory map.

I the timing FPGA, using a serial SPI-like interface with several extra status and
interrupt lines.

I outputs of the PLL oscillators which provide the reference and DMTD clocks.
I 8 downlink PHYs and 2 uplink PHYs (Texas Instruments TLK1221) connected using

8B10B-encoded parallel interfaces.
I 128k x 36 ZBT static RAM (GSI Semiconductor GS840Z36), where the switching

engine keeps the MAC lookup database.
I PPS input/output ports on the front panel.
I 8 timecode LVDS drivers.

The most important part of the main FPGA is the deterministic Ethernet switch-
ing core incorporating 10 1000Base-X Ethernet MACs (WR Endpoints), a multiport
non-blocking packet buffer with multiple priority levels (Swcore) and an address match-
ing and filtering engine (Routing Table Unit – RTU). Another major component is the
Network Interface Controller (NIC), enabling the main CPU to access the WR network
via the 11th, virtual switch port.

Moreover, the main FPGA performs several important synchronization tasks, such
as measuring phaseMM on all the ports with DDMTD phase detectors, gathering PTP
packets’ transmission and reception timestamps and generating the PPS pulses and the
UTC timecode. It also performs the calibration of the downlink ports when the MCH
is used with the mini-backplane.

58

4.2. Hardware

Ethernet PHYs

The WRS uses Texas Instruments’ TLK1221 discrete gigabit transceivers, both for
the uplink and downlink ports. The choice of discrete PHYs has been dictated by
the high cost of FPGAs with built-in gigabit transceivers at the time when the WRS
hardware was specified.

All PHYs use the same 125 MHz clock reference for transmission and all PHY data
lines and RX clocks are connected to the main FPGA. In addition, uplink PHY RX
clocks are also provided for the timing FPGA as a reference for the phase compensation
PLL. Therefore, all ports are identical data-wise and can work as WR masters, but only
the uplink ports can operate in WR slave mode.

Unfortunately, the TX/RX latencies of TLK1221 are non-deterministic (2 UI for the
TX path, 8 UI for the RX path with 0.5 UI step), hence the PHYs require external
calibration circuits. The WRS MCH has built-in calibration logic only for the uplink
ports, since in the microTCA configuration, downlink ports are not used to provide
timing information. In the standalone mode, the calibration must be performed by the
mini-backplane.

Main CPU system

The WRS CPU is an Atmel AT91SAM9263 System-on-Chip microcontroller incorpo-
rating an ARM926E core running at 200 MHz. The ARM architecture has been chosen
due to extreme popularity, ease of use, low price and excellent Linux OS support. The
following CPU peripherals are used:
I External Bus Interface (EBI) 0 connected with a 32-bit bus to 64 MBytes of SDRAM

memory operating at 133 MHz.
I EBI1 port, 2 external IRQ lines and DMA request line connected to the main FPGA.
I Serial Peripheral Interface (SPI) port 0, connected to an 8 MB DataFlash memory,

containing the system bootloader and the fail-safe OS image.
I SPI1 port, connected to the Watchdog MCU.
I MultiMedia Card (MMCI) interface 0, connected to a micro-SD card slot. The

microSD card stores the main OS file system.
I Ethernet MAC (EMAC) port connected through an external 10/100BaseT PHY

(Davicom DM9161) to a RJ45 Ethernet port on the device’s front panel.
I Two Synchronous Serial Controllers (SSC) connected to the configuration pins of

both FPGAs.
I Several General Purpose I/O pins, used to drive the front panel LEDs, configure the

AD9516 PLL and drive some FPGA configuration and reset pins.
I UART port routed via a level translator (MAX3232) to a mini-DB9 socket on the

front panel.

59

4.2. Hardware

The primary tasks of the main CPU are running the PTP protocol stack (WR-PTPv2
daemon) and the services handling inter-switch protocols (Spanning Tree, GMRP, etc.).
The CPU also runs switch management applications (SSH management console, SNMP
agent) and is responsible for the low-level hardware initialization (i.e. booting the FP-
GAs, setting up the clocking system, etc.).

4.2.4. Timing board

The MCH timing board, whose annotated layout is shown in fig. Figure 4.7 con-
tains the clock recovery system (timing FPGA and oscillators), two uplink ports (with
calibration logic), timing signal inputs and outputs, the backplane timecode line drivers
and the RS232 port.

Figure 4.7. WRS MCH timing board layout.

Oscillators and clock distribution

There are two digitally tunable clock generators on the timing board: one produc-
ing the clean 125 MHz REF clock locked to the network reference clock and another,
delivering the (125 + foffset) MHz offset DMTD clock which drives all DDMTD phase
detectors in the WRS.

The REF clock is derived from a 25 MHz fundamental frequency generated by a
crystal oscillator. In order to fulfill the Sync-E clock stability requirements, a Mercury
Crystal VM53S-series VCTCXO has been used, providing ±2.5 ppm center frequency
accuracy and ±10 ppm tuning range. The tuning voltage is produced by a 16-bit SPI
serial DAC (Analog Devices AD5662).

The VCTCXO drives the reference input of the AD9516 PLL synthesizer, which
multiplies its frequency by a factor of 5, producing the 125 MHz REF clock. The second

60

4.2. Hardware

reference input can be used to lock the REF clock to the clock coming from an external
source, such as a cesium or GPS-disciplined oscillator. The AD9516 chip incorporates a
10-output clock fanout which is used to propagate the REF clock to the timing FPGA
(as a timing PLL feedback and/or reference), the uplink PHYs, the main FPGA, the
microTCA backplane fanout and the SMB connector on the front panel. Furthermore,
the built-in fanout provides a programmable delay line on each output, which facilitates
compensating the skew between the clock and data traces on the PCB. Since the REF
clock drives almost all the logic in both FPGAs, the AD9516 PLL must be initialized
by the main CPU before booting up the FPGAs.

The DMTD clock generator has a similar structure but uses different components.
The oscillator is a 25 MHz CFPV-45 series VCXO with wider (min. ±100 ppm) pulling
range necessary to obtain enough DMTD frequency offset. The PLL multiplier/fanout
is a Texas Instruments’ CDCM61004, chosen due to lower price and no need for pro-
gramming. The DMTD VCXO is tuned with another AD5662 DAC.

In order to to protect the sensitive clock signals against interference and improve the
signal integrity on complex PCBs, the majority of the clock distribution system uses
LVDS/LVPECL differential signalling.

Timing FPGA

The central component of the timing board is a small Cyclone-3 FPGA (EP3C5)
which implements two digital PLLs which control the oscillators described in the previous
section:
I the Helper PLL, which locks the DMTD clock to the REF clock (in grandmaster

mode) or one of the uplink RX clocks (in slave mode) with programmable frequency
offset,

I the Main PLL, controlling the REF clock oscillator by locking it to selected uplink
RX clock and applying a programmable phase shift to compensate for the phase
drift. The main PLL is not used in the grandmaster mode.
The main reason for placing the PLLs in a separate FPGA was the sensitivity of the

PLL phase detectors to FPGA internal routing delays, which have to be very tightly
constrained in order to keep the same timing for every synthesis. Such constraining
can be done much easier (and faster – from the developer’s point of view) for a small
independent FPGA, rather than for a big, highly populated device.

The other role of the timing FPGA is controlling the PHY calibration crosspoint
and measuring the uplink transceivers’ TX/RX delays with an independent DDMTD
detector.

Uplink ports

The timing board hosts the two uplink PHYs (also TLK1221) and two SFP module
sockets, interfacing the transceivers with the physical medium. Both fiber and copper

61

4.2. Hardware

(1000BaseT) SFP modules are supported, although most copper SFPs cannot operate
in synchronous mode, hence significantly reducing the synchronization accuracy.

The serial lanes between the PHYs and the SFPs pass through an Analog Devices’
ADN4600 gigabit crosspoint switch which realizes the feedback of the PHY input/output
serial streams (see 3.5.6) to the delay calibration DDMTD detector inside the timing
FPGA.

4.2.5. Mini-backplane

The mini-backplane (MB) is a simple board providing 8 downlink ports’ SFP sockets
for the downlink ports of the WRS MCH and the necessary power supplies, enabling the
WRS to operate without an expensive microTCA crate. The block diagram of the MB
is depicted in Figure 4.8.

Figure 4.8. Mini-backplane block diagram.

The MCH is attached to the MB through a right-angle 170-pin AMC card connector.
All the downlink differential lanes are routed directly to the SFP sockets. The calibration
feedback signals for each port are produced by a pair of fast LVDS buffers (National
DS90LV001), placed right next to the SFPs to prevent creating stubs on the high speed
PCB traces. The tristated outputs of the calibration buffers are connected to a shared
bus, thus forming a simple multiplexer. The output of the mux drives one of the very
few available lines in the backplane connector, which are routed directly to the main
FPGA (microTCA Fabric Update input).

Each port’s link status and activity is indicated by two LEDs. The LEDs, along with
the SFP control lines (TX_FAULT, LOS, TX_DISABLE, DETECT) and calibration
buffers’ output enable pins are driven by 9 I2C I/O expanders (NXP’s PCA9534). The
access to the SFP EEPROM memories is multiplexed with a PCA9548 I2C hub. All

62

4.3. HDL Design

I2C peripherals are hooked to a common I2C bus which uses one of the IPMB lanes to
communicate with the MCH main CPU.

The MB includes an AC-DC converter, supplying the MCH board with +12 V.
The SFPs, calibration and I2C logic are powered from +3.3 V, produced by another
switching regulator. The MCH with MB are mounted in a nice enclosure, thus creating
a stand-alone WRS (prototype shown in Figure 4.9). Due to the considerable heat
dissipation in the MCH, it is recommended to use a small fan to force the airflow inside
the device.

Figure 4.9. Prototype of the stand-alone WRS.

4.3. HDL Design

The FPGA HDL design has been split into several large modules. Figure 4.10 shows
the hierarchy and connections of the blocks residing inside the FPGAs.

The system is built upon two interfaces: the memory-mapped Wishbone [23]
System-on-Chip bus, through which the CPU can access the internal registers of each

63

4.3. HDL Design

module and the WR Fabric Interface (WRF), used to exchange Ethernet packets, even-
tually associated with auxiliary data such as PTP timestamps.

Translation between the asynchronous CPU bus and Wishbone is performed in the
WB-CPU bridge block (wb_cpu_bridge). Some peripherals (RTU, NIC, TXTSU and
the PPS generator) can also produce interrupts which are multiplexed into a single CPU
IRQ line by the Vectored Interrupt Controller (wb_vic).

Figure 4.10. Block diagram of the FPGAs HDL design.

There are several clock domains in the design:

64

4.3. HDL Design

I REF clock - the timing reference clock, marshalling PHY data transmission and used
to timestamp packets.

I RX clocks - the clocks recovered by the PHYs from incoming bitstreams.
I DMTD clock - used for DDMTD phase measurements.
I SYS clock - global system clock driving the entire packet processing pipeline and

Wishbone bus. Its frequency is currently fixed to REF / 2 (62.5 MHz), but it needs
not be synchronous to the other clocks as long as it is fast enough to sustain the
minimum transfer rate on all WRF links.
The vast majority of the RTL (synthesizable) code has been written in VHDL’93

without any dependencies on third party libraries or IP cores. The Wishbone register
layouts and bus slaves have been generated using the wbgen2 tool [28]. Testbenches have
been developed in SystemVerilog.

4.3.1. WR Endpoints

WR Endpoints (WRE, HDL entity: wrsw_endpoint) are responsible for the low-level
Ethernet communication by adapting raw data streams coming from/to Ethernet PHYs
into a form suitable for high-level packet processing. A simplified block diagram of the
WRE is shown in Figure 4.11.

Figure 4.11. WR Endpoint block diagram.

The WRE comprises a gigabit Ethernet MAC optimized for low and deterministic
packet latency integrated with a 1000Base-X PCS and blocks necessary to produce fine
timestamps as described in section 3.5.5: a dual edge PTP timestamping unit and
a DDMTD phase detector. The current version of WRE can communicate with the
PHY either through an 8B10B-encoded Ten-Bit (TBI) Interface (used by the majority

65

4.3. HDL Design

of external serdes chips such as TLK1221) or an 8-bit parallel bus (available in most
FPGA integrated transceivers, such as Xilinx’s GTP).

On the host side, WRE provides several different interfaces:
I WR Fabric Interface (source port outputs received packets, sink port inputs the

packets to be sent).
I Routing Table Unit (RTU) interface, delivering decoded packet headers (MAC ad-

dresses, priorities, VLAN IDs) for the filtering engine.
I TX Timestamping Unit (TXTSU), outputting the collected timestamps of outgoing

packets.
I Wishbone slave, providing access to internal configuration and status registers.

The PCS part of the WRE is responsible for low-level framing, link detection, au-
tonegotiation and 8B10B encoding and decoding. Its other important role is retiming
the data from both TX and RX clock domains into a common, FPGA-wide SYS clock
domain, done by means of two small asynchronous FIFO buffers. This allows multiple
endpoints to work with asynchronous PHY clocks, while keeping the identical timing
of the host-side interfaces – a feature essential for Ethernet switches. The PCS also
contains the WR timestamper and DDMTD. Timestamps are passed to the MAC part
for further processing, whereas the DDMTD phase measurements can be read by the
host from one of Wishbone registers.

The MAC block implements the functionality of a typical Ethernet MAC extended
with features improving the latency and facilitating operation inside an Ethernet switch,
such as:
I VLAN tag insertion/deletion, allowing for trunking multiple VLANs in a single link

and creating transparent VLAN access ports.
I Configurable buffering and flow control mechanism, which can selectively disable

the sensitivity to PAUSE frames and RX buffering for a certain class of low-latency
packets. This ensures the WRE will not block critical traffic even under a very high
load.

I “Early” RTU output, providing the header data to the filtering engine as soon as
possible, bypassing the RX buffer.
The WRE provides a number of VHDL generics, which allow the user to tailor the

WRE features to match the particular requirements of a given application.

WR Fabric Interface

As previously mentioned, all inter-module packet transfers inside the switch are done
through WR Fabric (WRF) interface [29]. WRF is a pipelined Wishbone-based unidi-
rectional, point-to-point connection between a packet source (Wishbone master) and a
packet sink (Wishbone slave). The data bus width is fixed to 16 bits as a compromise
between the minimum system clock frequency (62.5 MHz for gigabit Ethernet) and the
amount of required FPGA resources.

66

4.3. HDL Design

Figure 4.12. Transferring a packet using WRF interface.

An example of WRF packet transfer is depicted in Figure 4.12. Each transfer is
contained within a single, locked, pipelined write cycle. Both sides of the link can
throttle the traffic (the source via deasserting WE, the sink by asserting STALL). Every
sink implements a standardized set of 3 registers:
I DATA – FIFO register to which the source sequentially writes the packet data.
I FLAGS – register for passing status information produced by the WRF source. For

example, the WRE uses it to indicate the result of address filtering or the code of an
error which caused the corruption of a received packet.

I OOB (Out Of Band data register) – another FIFO allowing to pass a user-defined
data block associated individually with each packet.

Timestamp delivery

The OOB register has great importance for the PTP implementation, since it is used
to transfer the packets’ timestamps between the PTP engine running in the CPU and the
hardware timestamping unit in all the endpoints. The way the timestamps are delivered
to the CPU is illustrated in Figure 4.13.

Figure 4.13. Passing TX and RX timestamps using WRF interface.

In the case of RX timestamps, the procedure is fairly simple (see 4.13a). The ris-
ing and falling edge timestamps produced by the PCS are associated with the unique
number of the physical port which received the packet (set by the host via Wishbone).

67

4.3. HDL Design

Afterwards, the data is packed into 3 subsequent 16-bit words and transferred inside an
OOB block. The CPU can then read it from the NIC RX buffer (4.3.4).

The process becomes more complicated for TX timestamps, as those cannot be de-
livered to the CPU using the WRF interface due to its unidirectionality. Moreover, PTP
packets transmitted by the CPU are usually broadcast to all ports in the switch, thus a
single PTP message may get a different TX timestamp on each port. This problem has
been solved by assigning a unique identifier for each outgoing frame to be timestamped
(see 4.13b). Endpoints can then associate the TX timestamp with the ID of the times-
tamped frame and the ID of the egress port. This information is passed to a shared TX
timestamp queue (4.3.2) and read back by the CPU through Wishbone.

The presented method can easily produce precise timestamps for every single incom-
ing and outgoing packet without any decrease of data throughput. That means no need
for hardware detection of PTP frames, often met in commercial MACs. Furthermore,
the WRE can be configured to embed a hash of each frame payload with both TX and
RX timestamps, enabling the WR switch to automatically measure the residency time
individually for each frame or turning it into a latency measurement device for testing
other networking gear.

4.3.2. PPS Generator and TX Timestamping Unit

The PPS Generator (PPSG, wrsw_pps _gen), shown in Figure 4.14, serves as a local
real-time clock, providing an absolute notion of time for all the blocks inside the WRS.

Figure 4.14. Block diagram of the PPS Generator.

The PPSG contains a set of Wishbone-controlled counters which produce the local
PPS signal and implement a local real-time clock. There are two counters, which can
be read and adjusted by the CPU via the Wishbone bus:
I PPS counter, counting from 0 to 124999999 at every REF clock cycle, thus giving a

period of one second. When the maximum value is reached, the counter produces a
pulse of programmable width on the PPS output. It’s other purpose is synchronizing
the timestamping units in all the endpoints, so all the timestamps in the systems are
referenced to the same time scale.

68

4.3. HDL Design

I UTC counter, which counts full seconds and interrupts the CPU at the beginning of
every second.
Both PPSG counters are adjusted by the PTP daemon (see 4.4.3) during coarse

synchronization (3.5.7, stages 1 and 2). Once the initial synchronization is done, the
counters are free running and the fine offset is corrected by phase shifting the REF clock.

The UTC counter is adjustable by simply adding an offset to its actual value. Ad-
justment of the PPS counter is done by setting it up to a given value right after it
overflows, hence an initial value of x is equivalent to increasing (decreasing) the counter
by −x. This simplifies the HDL, but the adjustment is not performed immediately (it
can take up to 2 seconds).

When the WRS operates in PTP grandmaster mode, the beginning of each second is
determined by an externally provided PPS signal (which simply resets the PPS counter).
The UTC time is usually received from the serial port and set by pre-loading the UTC
counter by the CPU.

The title of this subsection mentions another block – the TX Timestamping Unit
(wrsw_txtsu). Despite a seriously sounding name, it’s a simple shared FIFO register
collecting all the TX timestamps (associated with originating port and frame IDs) from
all the endpoints and delivering them to the CPU through Wishbone. TXTSU generates
an interrupt when the FIFO is not empty to avoid polling in the CPU driver.

4.3.3. Routing Table Unit and Switching Core

These two very complex, tightly coupled modules implement the actual Ethernet
switching engine. Since they do not participate in synchronization, their detailed de-
scription falls out of the scope of this thesis.

The RTU (wrsw_rtu) processes the header of an incoming packet and determines
the destination port(s) to which the packet shall be forwarded. The input of the RTU
are the decoded contents of the packet’s header: source and destination MAC addresses,
VLAN ID and PCP (Priority Code Point) field. The RTU searches for a hash table entry
corresponding to the input data and decides whether the packet shall be forwarded or
dropped. The hash table is stored in an external static RAM chip. If no matching entry
has been found, the packet is broadcast and its header is forwarded to the RTU daemon
running on the Main CPU. The software eventually updates the hash table (802.1D
Learning Process).

The RTU outputs its decision in the form of a bit vector called Destination Port
Mask (DPM), where each bit represents a certain port in the Swcore. If all the bits are
set, the packet shall be broadcast to all the ports, if all the bits are zeroes, the packet
shall be dropped. The RTU also evaluates the final priority of the packet, which can be
assigned per-port, per-MAC, per-VLAN or simply extracted from the PCP field in the
802.1q header.

69

4.3. HDL Design

The Switching Core (wrsw_swcore, abbreviated as Swcore) is a generic,
protocol-agnostic multiport packet queue. It receives packets from the 10 Endpoints
through WRF interface and directs them to the ports determined by the RTU. There
is also an 11th port, which enables the CPU to access the WR network via the NIC
(4.3.4). The basic properties of the Swcore are listed below:
I Store-and-Forward architecture with shared, page-addressable packet buffer imple-

mented using FPGA integrated RAM blocks.
I Non-blocking, achieves multi-gigabit bandwidth on each port.
I Configurable number of WRF ports.
I Up to 8 priority levels.

The Swcore is currently being upgraded with another module – Cut Through Switch-
ing Unit, which will route critical control traffic in cut-through mode, minimizing the
routing latency.

4.3.4. CPU Network Interface Controller

The Network Interface Controller (NIC, wrsw_nic) connects one of the ports of the
Swcore to the Main CPU, enabling the CPU to send and receive packets from/to the
WR network. The NIC can be therefore seen as a network card integrated inside the
WRS.

Figure 4.15. Block diagram of Network Interface Controller (NIC).

The NIC layout, shown in Figure 4.15 resembles a simple PC network card. Packets
are stored in a shared buffer, which can be an independent RAM block or a part of the
system memory (accessible via DMA). The buffer is governed by two descriptor tables
(one for transmitted and one for received packets). Descriptors containing valid packets
are marked as ready by setting an appropriate bit.

In order to send a packet, the CPU searches for an empty TX descriptor in the table
and allocates a region in the RAM buffer big enough to store the packet’s contents.
Afterwards, it sets up the TX descriptor by setting:
I address of the beginning of the packet in the RAM buffer and length of the packet,
I destination port mask, indicating to which ports the Swcore shall send the packet,

70

4.3. HDL Design

I if the packet has to be timestamped, also an unique packet ID. The ID is embedded
in the OOB block and associated with TX timestamp by Endpoint(s).

Once the descriptor is set up, it can be marked as ready. The NIC will then automat-
ically start the transmission and indicate its completion (or an error) by producing an
interrupt.

The reception path requires the CPU to initialize a number of empty RX descriptors
pointing to free regions in the packet RAM prior to receiving any packets. When a
packet comes to the WRF sink, the NIC takes first available free RX descriptor and
writes the contents of the packet to the buffer, starting at the address specified in the
descriptor. Once the reception is finished, the pending descriptor is updated with the
length of freshly received packet, its RX timestamp and ingress port ID, extracted from
the OOB block. Completion of reception (both successful and failed) also triggers an
interrupt.

The operating system running on the Main CPU sees the NIC as 10 independent
network interfaces, each representing a single physical port of the WRS. This is accom-
plished by generating “fake” DPM masks for TX packets and identification of ingress
ports by checking the OOBs of RX packets.

4.3.5. DDMTD phase detector implementation

The theoretical model of the DDMTD phase detector presented in chapter 3 cannot
be used in most practical implementations, since real-world clock signals always contain
some jitter which results in glitches around transitions in the DDMTD output. These
glitches can significantly hinder the accuracy of phase measurements (especially for poor
quality clocks, produced by PHYs with oversampling CDRs). In order to minimize
phase measurement error, a deglitching algorithm is required. Such algorithm takes the
waveform of the glitchy transition x(t) and estimates the time tt (further called phase
tag) at which a glitch-free transition should have occurred if both DDMTD clocks
were ideal. Using SystemVerilog modelling techniques, the author tested 5 deglitching
algorithms which were relatively simple to implement in FPGA. The comparison of the
algorithms is presented in Figure 4.16.

Each of the algorithms was fed with a set of 100 glitchy transitions produced by a
synthesizable DDMTD model from two clocks which were injected with a pre-defined
amount of gaussian jitter. The measure of performance was the worst-case phase tag
error (expressed as the difference between the deglitched and ideal phase tag, scaled to
the full period of the signal). Surprisingly, the best results were produced by the easiest
algorithm to implement (bit median). Its maximum phase error (collected for 100 phase
tag samples) was at 0.15% of the full scale which corresponds to 12 ps at Tref = 8 ns.

71

4.3. HDL Design

Figure 4.16. Comparison of DDMTD deglitching algorithms.

The actual HDL implementation of the deglitcher (HDL entity:
dmtd_with_deglitcher) is based on a free-running counter and a state machine
(FSM) shown in Figure 4.17. The FSM has three states:
1. wait_stable_0 – initial state, waiting until the input signal stabilizes at logic 0.

When the input has been stable for a predefined number of clock cycles (stable 0
threshold), the FSM changes its state to wait_edge.

2. wait_edge, which waits for the first glitch in the input, indicating a beginning of a
transition to logic 1. Afterwards, the FSM stores the current value of the free-running
counter in register tt (phase tag counter) and jumps to got_edge state.

3. got_edge, which increments tt register every time the input is at logic 0. After the
input has been stable at a high logic level for a given time (stable 1 threshold), the
FSM assumes that the transition area has ended. Subsequently, the value of tt is
outputted as the deglitched phase tag, the point at which x(t) holds the same number
of zeros to the right of t as the number of ones to the left (proof is left to reader).
The FSM then goes back to wait_stable_0 state and the whole cycle is repeated.
Since both the free running counter and the tt counter have finite lengths, the actual

implementation must properly handle their overflow. In the WRS, this has been achieved
by fixing the value of N from equation 3.8 to a power of 2 causing the period of the

72

4.3. HDL Design

Figure 4.17. DDMTD deglitching state machine.

deglitcher input signal to be also a power of 2. In such case no special overflow handling
is required (as long as the range of the counter is at least of the same size as the period
of the DDMTD output), thanks to the properties of two’s complement encoding of the
counter value.

4.3.6. Helper PLL

The Helper PLL (HPLL, HDL entity: wrsw_helper_pll) produces the offset fre-
quency (DMTD clock) used by all DDMTD detectors in the WRS. The block diagram
of the HPLL is shown in Figure 4.18.

Figure 4.18. Helper PLL block diagram.

The offset clock is generated by an external VCXO oscillator tuned by a DAC. It
can be locked either to the REF clock (in grandmaster mode) or to one of the RX clocks
(boundary clock mode). The configuration of the reference and feedback clock dividers
allows for obtaining offset frequencies expressed by (4.1):

foffset [ns] = 125 [MHz] · 2N
2N + ∆ (4.1)

The upper boundary of foffset is determined by the tuning range of the VCXO
and the required phase measurement resolution. The lower boundary is constrained by
the bandwidth of the Main PLL, since foffset also defines the sampling rate of phase

73

4.3. HDL Design

measurements. In the default configuration, the WRS uses N = 14 and ∆ = 1, thus
giving an offset of 7.628 kHz.

Figure 4.19. Structure of HPLL phase/frequency detector.

HPLL incorporates two different phase/frequency detectors, depicted in Figure 4.19:
I period detector, a low-gain linear detector which compares periods of the divided

input clocks. Its sensitivity is limited to a single REF clock cycle.
I Asynchronous Accumulating Bang-Bang phase/frequency detector (BB PFD) – a

high gain nonlinear detector with sensitivity better than single clock cycle.
The output of both detectors is fed to a dual channel Proportional-Integral controller.

The first channel is used to quickly achieve the desired frequency offset, taking advantage
of the linearity of the period detector. Its gain can be therefore quite high without the
risk on instability or excessive overshoot.

When the frequency offset reaches the programmed value, the HPLL resets the di-
vider counters (to minimize the phase shift between the divided clocks and thus speed
up the locking even further) and switches to the second PI channel which processes the
output of the BB detector. Since BB detectors are extremely nonlinear – they only
provide a qualitative information about the phase shift (too small, correct, too big), the
gain and bandwidth have to be much lower. For certain combinations of divider values,
it is even impossible to lock the PLL using only the BB PFD.

The PI output is adjusted with a pre-defined bias to match the mid-scale of the
oscillator’s control voltage and outputted via an SPI port to the DAC which tunes the
VCXO, thus closing the feedback loop.

The HPLL also incorporates a holdover unit which automatically switches the refer-
ence input when the currently selected reference source has failed. All HPLL parameters
can be set by the Main CPU via Wishbone and updated at any moment. Wishbone is
also used to check the lock status (the PLL assumes to be locked when the error value
stays below a pre-programmed threshold for a certain number of samples). The CPU
can also monitor all important signals inside the HPLL using a dedicated FIFO to obtain

74

4.3. HDL Design

an impulse/step response, a very useful feature for debugging the design and optimizing
the PI parameters.

4.3.7. Main PLL

The Main DDMTD PLL (DMPLL, HDL entity: wrsw_dmtd_pll), depicted in Fig-
ure 4.20 is the main component of the WRS clock recovery system.

Figure 4.20. Block diagram of the Main PLL.

The DMPLL takes one of the PHY RX clocks as a reference, cleans it up and applies
a programmable phase shift obtained with WR-PTP. The resulting REF clock is an
in-phase copy of the PTP grandmaster clock (as long as the value of offsetms produced
obtained with PTP is accurate). Each input channel (both feedback and reference) has
an independent DDMTD with the deglitching state machine described in section 4.3.5.
The free-running counters in all deglitchers are synchronized, so all the inputs share
the same time base. Phase tags produced by the DDMTDs are the entry point for the
control algorithm.

Similarly to the HPLL, the Main PLL also has two frequency and phase channels
per reference input, so the phase lock can be achieved much faster. The frequency path
subtracts subsequent phase tags generated for each input clock to obtain the periods of
reference and feedback signals. Thanks to the properties of two’s complement encoding
and the power-of-two constraint on the DMTD offset divider, the frequency error can
be calculated by simply subtracting the periods.

The phase path contains the actual phase shifter. The shifting is done by adjusting
the value of reference tag with a setpoint provided by the Main CPU via Wishbone bus
according to equation 4.2:

75

4.3. HDL Design

phase_error = tag_ref +phase_correction− tag_feedback. (4.2)

Note that the phase setpoint is not applied directly – there is an up-down counter
which slowly ramps the correction value until it reaches the programmed setting. This
is to prevent the PI controller from “ringing” in response to a step in the phase error.
In the current WRS design, the DMPLL achieves a phase shifting speed of 10 rad per
second which is way above the needs of PTP phase tracking.

Each reference channel can have a different phase setpoint. The resulting phase
and frequency errors are fed to a dual-branch PI controller of the same design as in
the HPLL and similar bandwidth parameters. The phase branch bandwidth is reduced
to filter out the noise in the phase tag values generated in the deglitchers. Since the
DDMTD detectors are very linear, the overall PI gains can be much higher.

Both PI controllers (HPLL and DMPLL) are equipped with an “anti-windup” mech-
anism which disables the integrator when the DAC output is close to the minimum or
maximum level. This is yet another measure for improving the locking time.

The reference input can be selected by multiplexing the values of phase and frequency
error delivered to the PI controller. This is done by an integrated holdover unit, similar
to the one used in the HPLL. All parameters of the Main PLL: PI gains, phase setpoints,
lock detection thresholds and the choice of reference clock are also configurable through
Wishbone.

4.3.8. PHY latency calibrator

The WRS also uses DDMTD phase detectors to calibrate the TX/RX latencies of
both uplink and downlink ports. Due to the limitations of the hardware, two calibra-
tors (HDL entity: wrsw_calibrator_dmtd) are required: one inside the timing FPGA,
measuring the uplink PHY latencies and one residing in the main FPGA, taking care of
the downlink ports. Both have the same structure, shown in Figure 4.21.

Figure 4.21. DDMTD-based PHY latency calibrator.

The uplink feedback signal is provided by the ADN4600 crosspoint switch, whereas
the downlink feedback comes from a mux built with tri-state LVDS buffers. Measuring
TX latencies is done by comparing the phase of the feedback signal with the REF clock.

76

4.4. Software

The RX latencies are obtained by comparing the feedback with the RX clock of the PHY
being calibrated.

Since the feedback signal involves much higher jitter level than the input clocks,
the raw phase value has to be averaged. The CPU can read the latency value through
Wishbone. Note that the calibrator does not select the source of the feedback signal – this
has to be done via an I2C bus (controlled by the Timing FPGA or the Watchdog MCU).
The calibration of one PHY takes around 200 milliseconds. Therefore, a single calibrator
unit can be shared between all the PHYs to reduce the FPGA resource footprint.

4.4. Software

The last part of the WRS description covers the embedded software running on the
Main CPU. The software works under the Linux operating system and manages all the
high-level aspects of the operation of the WRS (including the actual WR-PTP protocol
engine). It has been designed as a set of independent applications using a Remote
Procedure Call (RPC) mechanism for communication. Among these applications are
the Hardware Abstraction Layer (HAL), PTP and RTU daemons, which access the
WRS hardware through custom developed drivers.

4.4.1. System architecture

The Main CPU runs a typical Embedded Linux-based system, built upon the Buil-
droot [10] Linux distribution. The architecture of the OS and its applications is shown
in Figure 4.22.

The system is based on a 2.6.36 kernel compiled for Atmel AT91 architecture, with
the board support files derived from the Atmel’s AT91SAM9263-EK development kit.
The kernel has been extended with WRS-specific board setup code which provides
platform_data structures containing the configuration of FPGA peripherals, sets up
the EBI1-FPGA bus and initializes the FPGA VIC.

Both the kernel and the root filesystem are loaded by the U-Boot boot monitor.
Currently it is possible to boot up the device either from a microSD card or through
the management Ethernet port using BOOTP/TFTP protocols. The bootloader also
performs the very low-level CPU initialization (such as initializing the CPU PLL and
the SDRAM controller).

The networking-related components of the WRS are managed by the two kernel
modules:
I wr-rtu, which abstracts the RTU hardware for the RTU daemon.
I wr-nic, providing 10 network interfaces (wruX for the uplinks and wrdX for the

downlinks) which are bound to the respective physical ports of the WRS. The NIC

77

4.4. Software

Figure 4.22. WRS software architecture.

driver also handles the coarse packet timestamping, polling of the DDMTD phase
and the transmission/reception of the calibration pattern on each port.
The userland of the OS hosts several applications (mostly written in C language)

which control various aspects of WRS operation. The applications communicate between
each other through a simple Unix socket-based RPC (Remote Procedure Call) mecha-
nism implemented by the libwripc library. The two programs which perform important
synchronization tasks are the Hardware Abstraction Layer (HAL) daemon and the PTP
daemon, both described in the following subsections. Another notable application is
the RTU support daemon (wrsw_rtud), which handles MAC address learning, VLAN
configuration and packet filtering by configuring the RTU. The WRS also runs a SNMP
agent and SSH server, facilitating network management and diagnostics, as well as it
provides few stand-alone diagnostic tools (for example a synchronization status monitor
or an RTU diagnostic application), which are accessible through the SSH console.

4.4.2. Hardware Abstraction Layer

The Hardware Abstraction Layer daemon (wrsw_hal) manages all hardware periph-
erals of the WRS and acts as a bridge between the hardware modules and the high-level
applications such as the PTP daemon. It performs the initialization of the WRS, pro-
vides numerous user-space device drivers and handles the low-level timing tasks, such
as the PHY calibration and phase tracking.

The HAL is the first process launched during the start-up of the WRS and its first
task is to initialize the WRS hardware. The initialization process begins with the setup of

78

4.4. Software

the external components which must work prior to configuring the FPGAs (for example
the AD9516 PLL). Afterwards, the HAL boots up both FPGAs with the firmware stored
in the file system and sets up the interrupt-less user space peripheral drivers included in
the libswitchhw library (i.e. the HPLL and DMPLL, calibrators, the PPS generator,
etc.). In the following step, the HAL loads the kernel modules with drivers for the
VIC, NIC and RTU. Finally, it sets up the physical ports of switch by assigning physical
addresses and configuring the timing role of each port (master, slave, grandmaster, etc.).

Timing-wise, the HAL daemon acts as an intermediate layer between all the hardware
participating in synchronization (PPS generator, calibration logic and feedback circuits,
PLLs and endpoints) and the PTP software. The HAL API is a set of simple C functions,
which can be called by client applications (for example, the PTP daemon) through wripc
mechanism. The functions which are essential for synchronization are listed below:
1. halexp_lock_cmd – controls Sync-E clock recovery by programming the HPLL/DM-

PLL to lock to a given clock source. It can be also used to poll the lock status of the
PLLs, configure gain parameters and clock source switchover.

2. halexp_pps_cmd – coordinates PLL phase shifting with PPSG time adjustments.
The values of phase shift and offset corrections (provided by the client application in
seconds) are converted to native hardware units and used to program the DMPLL
and PPSG.

3. halexp_calibration_cmd – governs the entire PHY calibration process: controls
transmission and detection of calibration pattern, configures the crosspoint and cal-
ibration buffers and measures PHY delays by polling the calibrator DDMTDs. Raw
DDMTD phase shifts are converted to TX/RX delays, on the basis of the parameters
of a particular PHY declared in the HAL’s configuration file.

4. halexp_query_port_state – allows for polling the current state of a certain physical
port, including syntonization status and timing parameters: TX and RX delays,
phaseMM and phaseS .
The HAL can also orchestrate the access to the timing hardware between multiple

clients. For example, one can have an active PTP link working in the background
and simultaneously tune the DMPLL parameters using halexp_pll_cmd function. This
feature was intensively used during the optimization of the clock recovery PLL.

4.4.3. PTP Daemon

The PTP daemon encompasses a PTP protocol engine and WR protocol extensions,
which are necessary for achieving sub-nanosecond accuracy. The application is a heavily
modified fork of the ptpv2d project [25]. The most important modifications are:
I WR protocol stack, adding the calibration of the PHYs and physical layer syntoniza-

tion.
I Multi-port operation.

79

4.4. Software

I More precise internal timestamp format (UTC, nanoseconds, picoseconds), necessary
for calculating the offset with enough accuracy.

I Modified servo, which uses a hardware PLL to maintain syntonization and only
performs periodic offset adjustments.

I System-independent code: all system and networking functions are wrapped inside
platform-dependent libraries which can be easily implemented on different embedded
architectures (with and without an operating system).

I Fixed-point calculations (no floating point used).

Figure 4.23. PTP daemon and synchronization software architecture.

The architecture of the PTPd and other software components participating in the syn-
chronization process is shown in Figure 4.23. PTPd daemon lies on the top of the
software stack and runs as an stand-alone application. WR protocol is handled by a
separate state machine (defined in [11]), which is executed during UNCALIBRATED
state of the main PTP FSM, therefore the support for WR has no significant impact
on the standard PTP part of the daemon code. Gathered timestamps are fed to a
detachable servo, which calculates the clock offset and master-slave delay. Due to the
architecture of the servo, which relies on hardware-based syntonization, WRS cannot
operate as a standard PTP slave. This limitation can be, however, overcome by dy-
namically switching between a WR and standard servo, depending on the mode of the
remote master.

Another feature introduced for the WRS is the multiport mode, with a provision
that all the ports are independent PTP clocks with fixed roles (master/slave). WRS
PTPd implementation ensures that a failure on one of the ports port has no impact on
the operation of the remaining ports by launching an independent instance of the PTP

80

4.5. Performance measurements

engine per each port. The delays and offsets are calculated independently for each uplink
and the master selection and switchover is performed outside PTPd by the hardware
(DMPLL). This ensures that a failure of one of the uplinks will not harm the accuracy.

The presented model assumes that the PTPd never communicates directly with the
OS and the hardware, but through a platform-dependent portability layer. The network-
ing and timing APIs are provided by the libptpnetif library. In the WRS, libptpnetif also
serves as a gateway to the HAL daemon wripc API by implementing wrappers for all the
functions exported by the HAL. On OS-less platforms (such as the WR PTP Core [13]),
the portability layer may also need to implement some basic POSIX functions.

The OS layer includes the Linux network stack and the NIC driver, which take care
of transferring timestamped packets the HAL daemon, which controls the clock servo
and the calibration process. Timestamping is distributed among several hardware and
software components, mostly due to hardware constraints (shared UTC counter) and
limitations of data structures used in the Linux kernel:
I TX timestamps are generated entirely by the NIC driver, since their fine (picosecond)

part is always equal to 0. The nanosecond part is read from the TXTSU FIFO upon
transmission of each packet, whilst the UTC time is obtained from the UTC counter
in the PPS generator.

I Production of RX timestamps is done in two phases: the UTC part (from the PPSG)
and the nanosecond part (from the RX descriptor header in the NIC) are stored
within a timespec structure (resolution of which is limited to 1 ns) and passed with
the received packet to libptpnetif. The information whether the rising edge counter
is ahead of the falling edge counter (see 3.5.3) is encoded on the unused MSB of
the 32-bit nanoseconds field. The actual merging algorithm (3.5.5) is implemented
in libptpnetif, which obtains the missing phase information from the NIC driver
through a custom ioctl() call.
The PTPd also incorporates a debugging mechanism, which can be used to monitor

the status of synchronization through a dedicated wripc call.

4.5. Performance measurements

In order to evaluate the performance of the time and frequency transfer, the author
built a measurement system shown in Figure 4.24.

The system consisted of two WR switches connected with 5 kilometers of bare
single-mode G.652 fiber wound on a small plastic roll. The varying operating conditions
of the link were simulated by heating the fiber with a hot air gun. The measurement
procedure was split into two parts. The first part concentrated on the accuracy of slave’s
time by measuring the master-slave time offset. During the second part, the performance

81

4.5. Performance measurements

Figure 4.24. WR Switch test setup.

of the reference frequency transfer was characterized and the DMPLL frequency response
has been optimized to minimize jitter.

4.5.1. Synchronization accuracy

The accuracy of synchronization was tested with a LeCroy WavePro 20 GSample/sec-
ond oscilloscope by measuring the skew between master and slave PPS outputs over a
period of several hours. The obtained samples of PPS signal skew were used to construct
a histogram of master-slave offset, depicted in fig. 4.25.

Since both switches were operating in similar conditions (temperature, humidity,
components from the same production batch) and the SFP transceivers were paired, the
offset achieved an excellent mean value of 160 picoseconds with a standard deviation of
6.4 ps and a min-max span of 40 ps. These measurements, however, did not characterize
the long-term PVT (Process-Voltage-Temperature) and aging effects in the active com-
ponents of the WRS (FPGAs and clock distribution). It is expected that the variation
of the offset over a long time span will not exceed 1 ns.

4.5.2. Syntonization performance

The second part of the measurement procedure focused on evaluating the syntoniza-
tion performance by determining the frequency domain properties of the master and
slave REF clocks: spectral purity and PSD of the phase noise.

82

4.5. Performance measurements

130 140 150 160 170 180 190
0

20

40

60

80

100

120

140

Offset [ps]

N
u
m

b
e
r

o
f
h
it
s

mean offset = 161.8 ps

std dev = 6.4 ps

Measured histogram

Approximated gaussian distribution

Figure 4.25. Measured histogram of master-slave PPS offset.

Recovered clock spectrum

An Agilent 4395A spectrum/network analyzer was used to check the spectrum of the
slave’s recovered REF clock. Figure 4.26 illustrates the difference between the spectra
of the uplink PHY RX clock and the cleaned-up, phase-compensated output of the
slave’s Main PLL. Numerous spurs produced by the oversampling CDR in the uplink
PHY (red trace) are completely removed in the REF clock (blue trace). The green
trace shows the output clock of the PHY when the Main PLL is not yet locked to the
master, illustrating the way oversampling CDRs work – when the reference clock is
asynchronous with respect to the incoming serial stream, the CDR in the PHY must
switch the interpolated clocks more often, which results in a larger number of spurs in
the spectrum (green trace).

Spectral analysis also led to the discovery of a bug in PCB design. The switching
mode power supply on the Timing PCB had an unshielded inductor causing an inter-
ference which manifested itself as two symmetrical spurs separated from the main 125
MHz peak by 520 kHz (switching frequency of the problematic supply).

Phase noise performance

The phase noise of the recovered clock was characterized with a state-of-the-art
Agilent E5052 Signal Source Analyzer and a Symmetricom CS4000 cesium beam clock
serving as a source of 10 MHz reference frequency for the master WR Switch. PSD

83

4.5. Performance measurements

122.5 123 123.5 124 124.5 125 125.5 126 126.5 127 127.5
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency [MHz]

P
o

w
e

r
[d

B
m

]

Span = 5 MHz
RBW = 30 Hz
VBW = 30 Hz

RX (DMPLL free−running)

RX clock (DMPLL locked)

Recovered REF clock

Figure 4.26. Spectrum of slave’s PHY RX and REF clock.

measurements served as a base for the optimization of the DMPLL gain parameters and
its implementation of DDMTD.

We began the characterization by obtaining the PSDs of the master clock locked to
the external 10 MHz cesium reference, which is shown along with the 10 MHz cesium
oscillator output in Figure 4.27.

The noise floor of the 125 MHz master clock lies at -110 dBc/Hz, which is much
higher than the bare cesium output (-155 dBc/Hz). The difference is caused by the
relatively high additive jitter of the external reference input shaping circuit and the
AD9516 PLL reference inputs, when compared to the cleanliness of the cesium oscillator
output. Spurs were caused by PCB signal integrity issues in the clock input circuit (the
peak at 8 kHz is a result of intermodulation with the helper oscillator signal). Because
of the low bandwidth of the slave’s PLL, they do not affect the jitter of the slave’s clock.

In the next step, the PSDs of the slave’s free running oscillator and the slave’s PHY
RX clock have been measured (Figure 4.28). The traces are crossing at about 570 Hz.
Below that frequency the master clock is better than the local oscillator, hence 570 Hz
should be the theoretical cutoff frequency of the slave’s PLL.

The transfer function of the DMPLL is determined by the proportional and integral
gain of its PI controller. Using the PLL model described in section 2.5 where the PI
transfer function is defined as Kp+ Ki

s , we obtain the closed-loop gain 4.3:

H(s) = ηωns+ω2
n

s2 +ηωns+ω2
n

(4.3)

84

4.5. Performance measurements

10
0

10
2

10
4

10
6

10
8

−180

−160

−140

−120

−100

−80

−60

Frequency offset [Hz]

P
h

a
s
e

 n
o

is
e

 [
d

B
c
/H

z
]

Master locked to cesium

Cesium 10 MHz reference

Figure 4.27. Master clock locked to cesium reference.

where ωn is the so-called natural frequency of the loop and η is the damping factor.
ωn is proportional to the 3 dB cutoff bandwidth, while η defines the slope and peaking
of the PLL transmittance (peaking decreases with increasing values of η at the cost of
steepness of the slope of H(s)). Equation 4.4 expresses their relation with PI gains:

Kp = 2ηωn
KdKV CO

(4.4)

Ki = fsω
2
n

KdKV CO

where fs is the PI sampling rate, in the WRS equal to the HPLL frequency offset
(7.62 kHz), and Kd and KV CO are respectively, the gains of the phase detector and the
VCTCXO.

The values of ωn and η were chosen experimentally. The best results have been
observed for ωn = 15 Hz and η = 0.8, which gave a 3 dB cutoff frequency of 200 Hz with
1.8 dB peaking (see Figure 4.29). Higher values of η were making the PLL unstable
because the slope of H(s) did not guarantee enough attenuation of the high-frequency
noise produced by the phase detector. This can be improved by using a higher order
PLL filter.

The PSD of the slave’s recovered clock is depicted in Figure 4.30. The noise below
the DMPLL cutoff frequency is at -80 dBc/Hz, resulting in an integrated rms jitter
(5 Hz - 40 MHz) of about 2.3 ps. In order to reduce this value, the DMPLL’s phase

85

4.5. Performance measurements

10
0

10
2

10
4

10
6

10
8

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency offset [Hz]

P
h

a
s
e

 n
o

is
e

 [
d

B
c
/H

z
]

Slave PHY RX clock

Slave oscillator (free−running)

570 Hz

Figure 4.28. Slave’s PHY RX clock compared to a free-running VCTCXO.

detector has been modified to average multiple phase measurements coming from 32
parallel DDMTDs sampling at slightly different phases. This optimization resulted in
10 dBc lower phase noise and decreased the overall rms jitter to 1.8 ps. The jitter
integrated from 100 kHz to 40 MHz (a common measure of commercial oscillators) lies
in the femtosecond range (680 fs rms).

These results surpass the 20 ps jitter requirement by an order of magnitude and are
close to the theoretical resolution of the DDMTD (0.48 ps for a 125 MHz reference and N
= 14). It is still possible to reduce the jitter even further, since the DMPLL parameters
were obtained empirically and therefore may not be optimal.

86

4.5. Performance measurements

10
0

10
1

10
2

10
3

10
4

−20

−15

−10

−5

0

5

Frequency [Hz]

C
lo

s
e

d
−

lo
o

p
 g

a
in

 [
d

B
]

 3 dB bandwidth = 200 Hz

peaking = 1.8 dB

Figure 4.29. DMPLL closed loop gain.

10
0

10
2

10
4

10
6

10
8

−160

−140

−120

−100

−80

−60

−40

Frequency offset [Hz]

P
h
a
s
e
 n

o
is

e
 [
d
B

c
/H

z
]

Single DDMTD

32x parallelized DDMTD

Figure 4.30. PSD of slave’s recovered clock for different DDMTD implementations.

87

5. Applications of White Rabbit

The integration of Ethernet and fine timing in a White Rabbit network makes it a
perfect choice for many systems, not only in the particle accelerator world. The list
below presents some of the possible applications of WR:
I Phase-compensated radio frequency signal distribution, such as the RF clock or

beam-synchronous timing in LHC and other accelerators.
I Synchronization of base stations for TDoA (Time Difference of Arrival) passive mo-

bile device localization (for example, tracking a cellular phone in a dense, city envi-
ronment with centimeter-level accuracy).

I Metrology and distribution of reference time.
I Large-scale signal acquisition systems.
I Astronomy/radioastronomy (synchronization of telescope arrays).
I Synchronization of radar and terrestrial precise approach instrumentation in airports.

This chapter presents two example systems: an RF clock distribution system using
Direct Digital Synthesis and a distributed data acquisition system, which benefit from
the features of the WR network, while keeping the costs at a level comparable to the
traditional solutions.

5.1. Distributed Direct Digital Synthesis (D3S)

This application tackles the problem of distributing various RF clock signals over
large distances in a big accelerator system. The LHC and the Experiments both require
a number of clocks to be available around the whole machine. Among these clocks are:
beam 1/2 bunch clock and 40.079 MHz timing reference. Currently, each of these signals
has its own, independent (and custom-designed) distribution system, including separate
cabling. Some of the clocks are transmitted in an analog form, hence requiring repeaters
and expensive low-loss coaxial cables.

Distributed DDS facilitates multiplexing a number of clock signals in a single data
link, provided that both sides of the link are synchronized with enough accuracy. The
idea of the system is presented in fig. 5.1:

The transmitter module is a typical PLL loop with a DDS synthesizer chip fulfilling
the role of a voltage-controlled oscillator. Instead of an analog control voltage, the loop
delivers numeric values which control the phase and the frequency of the DDS output
signal to keep it in-phase with the input clock.

5.2. Distributed Oscilloscope

Figure 5.1. An example of a Distributed DDS system.

The control words are then encapsulated into Ethernet packets along with precise
UTC times at which they had been generated and broadcast via the WR network to
any number of receivers. An additional delta compression can be employed to reduce
data throughput. The receiver simply decodes these packets and feeds the extracted
control words into an identical DDS synthesizer at the same intervals calculated from
the associated timestamps. Since both synthesizers are clocked at the same frequency
and phase thanks to WR synchronization, the receiver’s DDS produces an exact, slightly
delayed copy of the original clock.

The presented method has many advantages over existing systems:
I Single system for multiple clocks. The number of signals is only limited by the

network throughput and the bandwidth and stability of the signals.
I Signal quality does not degrade with distance.
I Very simple receivers with almost no analog components.
I Unlimited number of receivers.
The Distributed DDS scheme has also some downsides: slightly higher latency (due
to encoding/decoding and network delays) and a tradeoff between the loop bandwidth
(and thus, the ability to track quickly changing signals) and the required throughput.
However, these can be neglected in the majority of clock distribution applications, where
the phases of the signals are relatively stable.

5.2. Distributed Oscilloscope

Every particle accelerator installation contains distributed data acquisition (DAQ)
systems, so the operators can have an insight into what’s happening inside the machine.
An example of a distributed DAQ system at CERN is the OASIS system [6]. Such
systems can be seen as oscilloscopes with a huge number of signal and trigger inputs.
They usually require:
I Configurable time base for all the input signals.
I Versatile trigger distribution.

89

5.2. Distributed Oscilloscope

I Flexible way of presenting the measured data to multiple users.
Advanced clock distribution features (distributed DDS) and low-latency message delivery
make WR a perfect candidate for the backbone of large-scale DAQ systems. A concept
of WR-based DAQ system is shown in fig. 5.2.

Figure 5.2. Distributed oscilloscope system using White Rabbit

Distributed DAQ works by sampling all inputs continuously (even when there are no
triggers) and buffering the recorded samples for a pre-defined time. When a trigger event
arrives (in form of a network message), the ADC card copies the interesting part of the
signal from the buffer and sends it (along with the timestamp of the first sample in the
data block) to the operator stations. The length of the ring buffer must be greater than
the trigger event delivery time. Thanks to the low-latency features of WR, even in large
networks this time should not exceed 100 – 200 us, hence a buffer of a few megabytes
per channel is sufficient.

All the ADC cards in the system use the same clock for sampling the signals. It is
also possible to use other frequencies, either through the Distributed DDS mechanism
or by deriving them from the network reference clock using a PLL synthesizer.

A Distributed DAQ system can use either internal triggers (where the trigger is
simply a UTC time at which the ADC is supposed to start the acquisition) and external
triggers, produced by Time-to-digital converter cards from asynchronous trigger inputs.
A reception of an external trigger pulse causes an automatic transmission of a trigger
event to the appropriate ADCs.

As a result, we obtain blocks of acquired digital data with associated precise trigger
timestamps. Both are transmitted through the WR network to the operators’ work-
stations (usually standard PCs). There, the signals are digitally post-processed (to
compensate for phase shifts and re-create the common time base) and displayed to the
user in a convenient way.

90

6. Summary

The aim of this thesis was to develop an Ethernet-based system for precise clock
synchronization. The realization of this goal was split into several stages and each of
them required a significant amount of work to obtain optimal results.

The first stage focused on studying the existing timing solutions and the Ethernet
and IEEE1588 standards. During that stage, the goals of the project were defined and
an Ethernet-based network architecture was chosen, allowing for cost-optimal FPGA
implementation of WR devices. In the second step, all the elements of an optical Eth-
ernet link which have an impact on the accuracy of synchronization were thoroughly
analyzed. Another notable achievement was the concept of a Digital DMTD phase
detector, facilitating picosecond-level multichannel phase measurements in inexpensive
FPGA devices. The result of this work is the WR synchronization algorithm presented
in Chapter 3.

The correctness of the WR algorithm was confirmed by designing, manufacturing
and characterizing the timing performance of the WR Switch, presented in Chapter 4.
Timing measurements done on the WRS allowed for further optimization of the syn-
chronization algorithm and confirmed that the goal of the thesis has been fully achieved.

The performance of the presented IEEE1588 and SyncE-based method exceeds the
initial expectations both in terms of the accuracy of synchronization and cleanliness of
the distributed clock signal. The WR Switch was compared with other PTP devices
during ISPCS’2010 conference plug fest and is currently the most accurate publicly
available PTP implementation. This gives confidence that the the presented method
can be employed in larger networks to build a fully synchronous hierarchy which can be
used for applications with demand for high-accuracy timing (e.g. accelerator sites and
radiotelescopes).

WR has been already chosen as the timing system for the new FAIR (Facility for
Antiproton and Ion Research) complex in GSI (Darmstadt, Germany) and for the ren-
ovated control system of the injector chain at CERN (Linacs, PSB, PS). It also gained
recognition in the commercial world – companies are already designing WR-compatible
cards (Elproma, National Instruments).

However, there are still many fields in which further research needs to be done:
network reliability (fast switchover of broken links), optimization of the clock recovery
PLL and development of a standardized method for calibrating WR devices. Also,
a new version of WRS hardware (V3) is being currently designed. The full system,

6 Summary

incorporating a WR Master, WR Switches and WR Nodes (client cards) is expected to
be commercially available at mid-2012.

The WR project is more than the synchronization algorithm and the WR switch, and
it is not the work of one man. The author wishes to thank the people from CERN, GSI
and all WR team members, without whom the goals of the project would have never
been achieved.

Summarizing, the WR project has proven that sub-nanosecond synchronization can
be done with an Ethernet-based network. I hope that the subject of this thesis will
encourage others to conduct more successful research in the field of timing systems.

October 2009 - April 2011

92

Bibliography

[1] Alan V. Oppenheim and Alan S. Willsky and S. Hamid Nawab. Signals and Systems.
Prentice Hall, 2nd edition, 1996.

[2] Alan V. Oppenheim and Ronald W. Schafer and John R. Buck. Discrete-Time Signal
Processing. Prentice Hall, 2nd edition, 1999.

[3] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Variables and
Stochastic Processes. McGraw Hill, 4th edition, 2002.

[4] Bahaa E.A. Saleh and Malvin Carl Teich. Fundamentals of Photonics. Wiley-Interscience,
2007.

[5] Lewis Caroll. Alice in Wonderland. 1865.
[6] CERN. Open Analogue Signal Information System (OASIS). http://project-oasis.

web.cern.ch/.
[7] Actel Corporation. Implementing an 8b/10b Encoder/Decoder for Gigabit Ethernet in the

Actel SX FPGA Family. http://www.actel.com/documents/SX_GB_Ethernet_AN.pdf,
1998. Actel application note.

[8] D.A. Howe and T.N. Tasset. Clock Jitter Estimation based on PM Noise Measurements.
http://tf.nist.gov/timefreq/general/pdf/1895.pdf, 2003. Proceedings of the 2003
IEEE International Frequency Control Symposium and PDA Exhibition.

[9] D.B Sullivan, D.W. Allan, D.A. Howe, F.L. Walls. Characterization of Clocks and Oscil-
lators. http://tf.nist.gov/general/pdf/868.pdf, 1990. NIST Technical Note.

[10] E.Andersen, the Buildroot Developers. Buildroot: making Embedded Linux easy. http:

//buildroot.uclibc.org/.
[11] E.G. Cota, M. Lipiński, T. Włostowski, E.V.D. Bij, J. Serrano. White Rabbit Specification:

Draft for Comments. http://www.ohwr.org/documents/21, 2010.
[12] Floyd M. Gardner. Phaselock Techniques. Wiley, 3rd edition, 2005.
[13] G. Daniluk. White Rabbit PTP FPGA Core. http://ohwr.org/projects/wr-cores.
[14] Gene F. Franklin and J. David Powell and Abbas Emami-Naeini. Feedback Control of

Dynamic Systems. Addison Wesley, 3rd edition, 1994.
[15] IEEE. IEEE 1588: "Standard for a Precision Clock Synchronization Protocol for Net-

worked Measurement and Control Systems. http://standards.ieee.org/, 2008. IEEE
standard.

[16] IEEE. IEEE 802.3: LAN/MAN CSMA/CDE (Ethernet) Access Method. http:

//standards.ieee.org/getieee802/802.3.html, 2008. IEEE standard.
[17] Intel, Helwett-Packard, NEC, Dell. Intelligent Platform Management Interface Specifica-

tion. http://www.intel.com/design/servers/ipmi/spec.htm, 2007.

93

http://project-oasis.web.cern.ch/
http://project-oasis.web.cern.ch/
http://www.actel.com/documents/SX_GB_Ethernet_AN.pdf
http://tf.nist.gov/timefreq/general/pdf/1895.pdf
http://tf.nist.gov/general/pdf/868.pdf
http://buildroot.uclibc.org/
http://buildroot.uclibc.org/
http://www.ohwr.org/documents/21
http://ohwr.org/projects/wr-cores
http://standards.ieee.org/
http://standards.ieee.org/getieee802/802.3.html
http://standards.ieee.org/getieee802/802.3.html
http://www.intel.com/design/servers/ipmi/spec.htm

[18] ITU. Timing characteristics of synchronous ethernet equipment slave clock (EEC). http:

//www.itu.int/rec/T-REC-G.8262, 2007.
[19] J. Serrano, P. Alvarez, M. Cattin, E. G. Cota, J. H. Lewis, P. Moreira, T. Wlostowski

and others. The White Rabbit Project. In ICALEPCS TUC004, 2009.
[20] P.P.M. Jansweijer and H.Z. Peek. Measuring propagation delay over a 1.25 Gbps bidirec-

tional data link. http://www.nikhef.nl/pub/services/biblio/technicalreports/

ETR2010-01.pdf.
[21] John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing. Prentice Hall, 4th

edition, 2006.
[22] M.A. Lombardi, T.P. Heavner and S.R. Jefferts. NIST Primary Frequency Standards and

the Realization of the SI Second. http://tf.nist.gov/general/pdf/2039.pdf, 2007.
[23] OpenCores/OrSOC. Wishbone bus specification (rev. B4). http://cdn.opencores.org/

downloads/wbspec_b4.pdf.
[24] PICMG. Micro Telecommunications Computing Architecture Base Specification. https:

//www.picmg.org/v2internal/specorderformsec-member.htm, 2007.
[25] PTPv2d Developers. ptpv2d Daemon (original project). http://code.google.com/p/

ptpv2d.
[26] Enrico Rubiola. Phase Noise and Frequency Stability in Oscillators. Cambridge University

Press, 2009.
[27] Jeff Sonntag and John Stonick. A Digital Clock and Data Recovery Architecture for

Multi-Gigabit/s Binary Links. IEEE Custom Integrated Circuits Conference, 2005.
[28] T. Włostowski. wbgen2 - a Wishbone slave core generator . http://ohwr.org/projects/

wishbone-gen.
[29] T. Włostowski. White Rabbit Fabric Interface (WRF) specification. http://ohwr.org/

projects/white-rabbit/documents/.
[30] R.C. Walker. Designing Bang-Bang PLLs for Clock and Data Recovery in Se-

rial Data Transmission Systems. http://www.omnisterra.com/walker/pdfs.papers/

BBPLL.pdf.
[31] WR Developers. Open Hardware Repository (White Rabbit project home page). http:

//ohwr.org/projects/white-rabbit.

http://www.itu.int/rec/T-REC-G.8262
http://www.itu.int/rec/T-REC-G.8262
http://www.nikhef.nl/pub/services/biblio/technicalreports/ETR2010-01.pdf
http://www.nikhef.nl/pub/services/biblio/technicalreports/ETR2010-01.pdf
http://tf.nist.gov/general/pdf/2039.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
https://www.picmg.org/v2internal/specorderformsec-member.htm
https://www.picmg.org/v2internal/specorderformsec-member.htm
http://code.google.com/p/ptpv2d
http://code.google.com/p/ptpv2d
http://ohwr.org/projects/wishbone-gen
http://ohwr.org/projects/wishbone-gen
http://ohwr.org/projects/white-rabbit/documents/
http://ohwr.org/projects/white-rabbit/documents/
http://www.omnisterra.com/walker/pdfs.papers/BBPLL.pdf
http://www.omnisterra.com/walker/pdfs.papers/BBPLL.pdf
http://ohwr.org/projects/white-rabbit
http://ohwr.org/projects/white-rabbit

List of Figures

1.1 Simplified schematic of LHC accelerator complex (not to scale) 8
1.2 Standard and Industrial Ethernet versus White Rabbit 10

2.1 Structure of cesium beam atomic clock . 12
2.2 Synchronization using GPS . 13
2.3 One-sided Power Spectral Distribution of phase noise for a typical oscillator. . . . 15
2.4 Internal structure of a typical phase measurement system. 17
2.5 Block diagram of a phase-locked loop. 18
2.6 Optimal choice of PLL bandwidth for jitter-cleaning applications. 20
2.7 Illustration of transfer function peaking in a Bode plot. 20

3.1 The clock synchronization problem. 21
3.2 Physical link between WR nodes. 23
3.3 Encoding and decoding of 1000Base-X serial data stream. 23
3.4 Frame encapsulation in the Physical Coding Sublayer (PCS) 24
3.5 1000Base-X serializer and deserializer (a) and comma alignment (b) 25
3.6 Timestamping in PTP and NTP . 27
3.7 An example of PTP network . 28
3.8 PTPv2 message exchange for a two-step End-to-End clock synchronization. 29
3.9 An example of clock offset histogram. 30
3.10 Comparison between standard and synchronous Ethernet 32
3.11 Topology of WR network . 33
3.12 Model of a WR link (a) and relations between master and slave clocks (b) 34
3.13 WR synchronization flow . 35
3.14 WR Link detection and syntonization . 36
3.15 Structure of a WR timestamping unit (TSU) . 37
3.16 Timestamping errors caused by clock jitter . 38
3.17 Dual-edge timestamping in WR . 38
3.18 Structure of an analog DMTD phase detector . 39
3.19 Structure of a digital DMTD phase detector . 40
3.20 A vernier (a) and signals generated by DDMTD (b) 40
3.21 Glitches in the DMTD output caused by clock jitter 41
3.22 Algorithm for enhancing coarse timestamps with DMTD phase. 42
3.23 Example of t4p timestamp enhancing. 44
3.24 Delay asymmetries in WR optical link. 44
3.25 Random delays in gigabit SerDes devices (a) and blocks causing them (b). 47

95

3.26 PHY latency measurement using calibration patterns. 48
3.27 WR slave offset adjustment (a) and clock servo (b) 49
3.28 PTP message flow during WR synchronization. 51

4.1 Interfaces and functionality of WRS. 53
4.2 WRS module assembly (a) and photograph (b). 54
4.3 WRS operating in a microTCA crate. 55
4.4 Standalone WRS with a mini-backplane. 55
4.5 WRS MCH system block diagram. 57
4.6 WRS MCH main board layout. 58
4.7 WRS MCH timing board layout. 60
4.8 Mini-backplane block diagram. 62
4.9 Prototype of the stand-alone WRS. 63
4.10 Block diagram of the FPGAs HDL design. 64
4.11 WR Endpoint block diagram. 65
4.12 Transferring a packet using WRF interface. 67
4.13 Passing TX and RX timestamps using WRF interface. 67
4.14 Block diagram of the PPS Generator. 68
4.15 Block diagram of Network Interface Controller (NIC). 70
4.16 Comparison of DDMTD deglitching algorithms. 72
4.17 DDMTD deglitching state machine. 73
4.18 Helper PLL block diagram. 73
4.19 Structure of HPLL phase/frequency detector. 74
4.20 Block diagram of the Main PLL. 75
4.21 DDMTD-based PHY latency calibrator. 76
4.22 WRS software architecture. 78
4.23 PTP daemon and synchronization software architecture. 80
4.24 WR Switch test setup. 82
4.25 Measured histogram of master-slave PPS offset. 83
4.26 Spectrum of slave’s PHY RX and REF clock. 84
4.27 Master clock locked to cesium reference. 85
4.28 Slave’s PHY RX clock compared to a free-running VCTCXO. 86
4.29 DMPLL closed loop gain. 87
4.30 PSD of slave’s recovered clock for different DDMTD implementations. 87

5.1 An example of a Distributed DDS system. 89
5.2 Distributed oscilloscope system using White Rabbit 90

96

Appendices

6.1. Thesis sources

The PDF version of this thesis has been included on the attached CD-ROM along
with the LATEX source code. All the drawings are included in Corel Draw, EPS, SVG
and PDF formats.

6.2. WRS design and source code

The source code of the WRS is publicly available on the Open Hardware Repository
website. It has not been included on the attached CD-ROM . The hardware, HDL and
software design copyright belongs to CERN, and parts are copyright GSI Darmstadt.
The sources are subject to one of the following licenses:
I Hardware design (schematics and PCB layouts): CERN Open Hardware License v.

1.0
I VHDL code: Lesser General Public License (LGPL) v. 2.1
I Software: GNU General Public License (GPL) v. 2 or LGPL v. 2.1

97

	List of abbreviations
	Introduction
	Background
	Scope

	Theoretical background
	Time and frequency references
	Atomic clocks
	GPS-synchronized clocks

	The imperfect clock signal
	Phase noise and jitter
	Sampled phase noise considerations
	Relationship with oscilloscope jitter measurements

	Measuring phase noise
	Phase-locked loops

	Synchronization in White Rabbit
	The clock synchronization problem
	Physical network layer
	IEEE 802.3 optical gigabit Ethernet
	Low-level 1000Base-X encoding

	Precision Time Protocol (IEEE 1588)
	Synchronization in PTP
	PTP performance and limitations

	Synchronous Ethernet
	White Rabbit synchronization model
	WR link model
	Link detection and syntonization
	Coarse delay measurement
	Digital DMTD phase detector
	Fine delay measurement
	Link asymmetry estimation
	Establishing and maintaining synchronization

	Integration of White Rabbit into PTP

	The White Rabbit Switch
	Overview
	Hardware
	Hardware platform
	System design
	Main board
	Timing board
	Mini-backplane

	HDL Design
	WR Endpoints
	PPS Generator and TX Timestamping Unit
	Routing Table Unit and Switching Core
	CPU Network Interface Controller
	DDMTD phase detector implementation
	Helper PLL
	Main PLL
	PHY latency calibrator

	Software
	System architecture
	Hardware Abstraction Layer
	PTP Daemon

	Performance measurements
	Synchronization accuracy
	Syntonization performance

	Applications of White Rabbit
	Distributed Direct Digital Synthesis (D3S)
	Distributed Oscilloscope

	Summary
	Bibliography
	List of Figures
	Appendices
	Thesis sources
	WRS design and source code

