Nik/hef

Peter Jansweijer
IEEE1588 DELAY ASYMMETRY MEASUREMENT MODE: THREE ONE-WAY DELAY MATH

Version 1.0 / May 2023

THREE ONE-WAY-DELAYS MATH

IEEE1588-2019 7.4.2 *), **):
[1] $<$ meanPathDelay $>=\frac{t_{m s}+t_{s m}}{2}$
[2] $\quad t_{m s}=<$ meanPathDelay $>+<$ delayAsymmetry $>$
[3] $\quad t_{s m}=<$ meanPathDelay $>-<$ delayAsymmetry $>$
From 2 and 3 follows:
[4] $<$ delayAsymmetry $>=\frac{t_{m s}-t_{s m}}{2}$
Suppose timeTransmitter to timeReceiver changes transmission characteristic x then
$t_{m s}$ is a function of $x_{m s}$
$t_{s m}$ is constant

$<$ roundTripDelay $>$ as a function of $x_{m s}$ is:
[5] $<$ roundTripDelay $\left(x_{m s}\right)>=t_{m s}\left(x_{m s}\right)+t_{s m}$

THREE ONE-WAY-DELAYS MATH

Substitute [5] into [4] :
[6] $<$ delayAsymmetry $\left(x_{m s}\right)>=\frac{<\operatorname{roundTripDelay}\left(x_{m s}\right)>-2 t_{s m}}{2}$
At equal transmission characteristic $x_{m s}=x_{s m},\langle$ delayAsymmetry $\rangle=0$ so [6] results in:
[7] $\quad 2 t_{s m}=<\operatorname{roundTripDelay}\left(x_{s m}\right)>$
Substitute [7] into [6] leads to < delayAsymmetry $>$ as a function of x in terms of round-trip-delays:
[8] $\left\langle\right.$ delayAsymmetry $\left.\left(x_{m s}\right)\right\rangle=\frac{\left.\left\langle\operatorname{roundTripDelay}\left(x_{m s}\right)\right\rangle-<\text { roundTripDelay }\left(x_{s m}\right)\right\rangle}{2}$
For $x_{m s}=x_{1}, x_{2}$ and fixed $x_{s m}, t_{m s}$ can be expressed as $t_{s m}$ plus a time t depending on $x_{m s}$ [9] $\quad t_{m s}\left(x_{m s}\right)=t_{s m}+t\left(x_{m s}\right)$

From [5] follows
 [10] $<$ roundTripDelay $\left(x_{m s}\right)>=t\left(x_{m s}\right)+2 t_{s m}$

THREE ONE-WAY-DELAYS MATH

- IEEE

Substitute [10] into [6] :
[11] < delayAsymmetry $\left(x_{m s}\right)>=\frac{t\left(x_{m s}\right)}{2}$
Under the assumption that there is a (nearly) linear relation of one-way-delay as a function of transmission characteristic x, for (small) Δx, scaling [11] to Δx yields a tangent slope in [seconds per "unit of x "]:
[12] $\frac{\left\langle\text { delayAsymmetry }\left(x_{m s}\right)\right\rangle}{\Delta_{x}}=\frac{t\left(x_{m s}\right)}{2 \Delta_{x}}=$ tangent
define
[13a] $\Delta x_{1}=x_{1}-x_{s m}$
[13b] $\Delta x_{2}=x_{2}-x_{s m}$
combine [12] and [13]
[14] $\frac{\left\langle\text { delayAsymmetry }\left(x_{1}\right)\right\rangle}{\Delta x_{1}}=\frac{\left\langle\text { delayAsymmetry }\left(x_{2}\right)\right\rangle}{\Delta x_{2}}=\frac{t\left(x_{1}\right)}{2 \Delta x_{1}}=\frac{t\left(x_{2}\right)}{2 \Delta x_{2}}$

THREE ONE-WAY-DELAYS MATH

thus:
[15] $t\left(x_{2}\right)=t\left(x_{1}\right) \frac{\Delta x_{2}}{\Delta x_{1}}$
measured < roundTripDelay $>$ for x_{1} and x_{2} can be expressed using [10]
[16] < roundTripDelay $\left(x_{1}\right)>-<$ roundTripDelay $\left(x_{2}\right)>=t\left(x_{1}\right)-t\left(x_{2}\right)$ feeding [15] into [16]
[17] $t\left(x_{1}\right)=\left(<\operatorname{roundTripDelay}\left(x_{1}\right)>-<\operatorname{roundTripDelay}\left(x_{2}\right)>\right) \frac{\Delta x_{1}}{\Delta x_{1}-\Delta x_{2}}$
$<$ delayAsymmetry $>$ as a function of measured $<$ roundTripDelay $>$ at x_{1} and x_{2} is (substitute [17] into [11]):
[18] $<$ delayAsymmetry $\left(x_{1}\right)>=$

$$
\left(<\operatorname{roundTripDelay}\left(x_{1}\right)>-<\operatorname{roundTripDelay}\left(x_{2}\right)>\right) \frac{\Delta x_{1}}{2\left(\Delta x_{1}-\Delta x_{2}\right)}
$$

THREE ONE-WAY-DELAYS MATH

IEEE

substitute $\Delta x_{1}, \Delta x_{2}$ as defined in [13]:
[19] $<$ delayAsymmetry $\left(x_{1}\right)>=\frac{\left(x_{1}-x_{s m}\right)\left(<\operatorname{roundTripDelay}\left(x_{1}\right)-<\operatorname{roundTripDelay}\left(x_{2}\right)\right)}{2\left(x_{1}-x_{2}\right)}$
In IEEE 1588 nomenclature:
$x_{1}=\mathrm{X}_{\mathrm{oWD} 1}$
$x_{2}=\mathrm{X}^{\prime}{ }_{\mathrm{oWD} 1}$
$x_{s m}=X_{\text {owD2 }}$
$<$ roundTripDelay $\left(x_{1}\right)>\quad=<$ roundTripDelay>
$<$ roundTripDelay $\left(x_{2}\right)>\quad=$ <roundTripDelay'>
a) Constant transmission characteristic $X_{\text {owD2 }}$

[20] < delayAsymmetry $>=\frac{\left(\mathrm{X}_{\mathrm{oWD1} 1}-\mathrm{X}_{\mathrm{oWD2}}\right)(<\text { roundTripDelay> - <roundTripDelay'>) }}{2 \cdot\left(X_{\text {on }} \mathrm{X}^{\prime}\right.}$ 2. ($\mathrm{X}_{\text {oWD1 }}{ }^{-} \mathrm{X}^{\prime}{ }_{\text {owD1 }}$)

THREE ONE-WAY-DELAYS MATH

The other way around:
Suppose timeReceiver to timeTransmitter changes transmission characteristic then
$t_{m s}$ is constant
$t_{s m}$ is a function of $x_{s m}$

THREE ONE-WAY-DELAYS MATH

$<$ roundTripDelay $>$ as a function of $x_{s m}$ is:
[5'] <roundTripDelay $\left(x_{s m}\right)>=t_{m s}+t_{s m}\left(x_{s m}\right)$
Substitute [5'] into [4] :
[6'] <delayAsymmetry $\left(x_{s m}\right)>=\frac{\left.2 t_{m s}-<\operatorname{roundTripDelay}\left(x_{s m}\right)\right\rangle}{2}$
At equal transmission characteristic $x_{s m}=x_{m s},\langle$ delayAsymmetry $\rangle=0$ so [6'] results in:
[7'] $\quad 2 t_{m s}=<$ roundTripDelay $\left(x_{m s}\right)>$
Substitute [7'] into [6'] leads to < delayAsymmetry $>$ as a function of x in terms of round-trip-delay:
[8'] $\left\langle\right.$ delayAsymmetry $\left.\left(x_{s m}\right)\right\rangle=\frac{\left.\left\langle\text { roundTripDelay }\left(x_{m s}\right)\right\rangle-<\text { roundTripDelay }\left(x_{s m}\right)\right\rangle}{2}$

THREE ONE-WAY-DELAYS MATH

For $x_{s m}=x_{1}, x_{2}$ and fixed $x_{m s}, t_{s m}$ can be expressed as $t_{m s}$ plus a time t depending on $x_{s m}$ [9'] $\quad t_{s m}\left(x_{s m}\right)=t_{m s}+t\left(x_{s m}\right)$

From [5'] follows
[10'] < roundTripDelay $\left(x_{s m}\right)>=2 t_{m s}+t\left(x_{s m}\right)$
Substitute [10'] into [6'] :
[11'] <delayAsymmetry $\left(x_{s m}\right)>=\frac{-t\left(x_{s m}\right)}{2}$
Under the assumption that there is a (nearly) linear relation of one-way-delay as a function of transmission characteristic x , for (small) Δx, scaling [11'] to Δx yields a tangent slope in [seconds per "unit of x "]:
[12'] $\frac{\text { <delayAsymmetry }\left(x_{s m}\right)>}{\Delta_{x}}=\frac{-t\left(x_{s m}\right)}{2 \Delta_{x}}=$ tangent

THREE ONE-WAY-DELAYS MATH

define
[13a'] $\quad \Delta x_{1}=x_{1}-x_{m s}$
[13b'] $\Delta x_{2}=x_{2}-x_{m s}$
combine [12'] and [13']

$$
\text { [14'] } \frac{\left\langle\text { delayAsymmetry }\left(x_{1}\right)>\right.}{\Delta x_{1}}=\frac{\text { <delayAsymmetry }\left(x_{2}\right)>}{\Delta x_{2}}=\frac{-t\left(x_{1}\right)}{2 \Delta x_{1}}=\frac{-t\left(x_{2}\right)}{2 \Delta x_{2}}
$$

thus:

$$
\left[15^{\prime}=15\right] \quad t\left(x_{2}\right)=t\left(x_{1}\right) \frac{\Delta x_{2}}{\Delta x_{1}}
$$

measured < roundTripDelay > for x_{1} and x_{2} can be expressed using [10']
[16' ${ }^{\prime}$ 16] $<$ roundTripDelay $\left(x_{1}\right)>-<$ roundTripDelay $\left(x_{2}\right)>=t\left(x_{1}\right)-t\left(x_{2}\right)$
feeding [15'] into [16']
[17' $\left.{ }^{\prime} 17\right] t\left(x_{1}\right)=\left(<\operatorname{roundTripDelay}\left(x_{1}\right)>-<\operatorname{roundTripDelay}\left(x_{2}\right)>\right) \frac{\Delta x_{1}}{\Delta x_{1}-\Delta x_{2}}$

THREE ONE-WAY-DELAYS MATH

$<$ delayAsymmetry $>$ as a function of measured $<$ roundTripDelay $>$ at x_{1} and x_{2} is (substitute [17'] into [11']):
[18'] <delayAsymmetry $\left(x_{1}\right)>=$
$-\left(<\operatorname{roundTripDelay}\left(x_{1}\right)>-<\operatorname{roundTripDelay}\left(x_{2}\right)>\right) \frac{\Delta x_{1}}{2\left(\Delta x_{1}-\Delta x_{2}\right)}=$

THREE ONE-WAY-DELAYS MATH

substitute $\Delta x_{1}, \Delta x_{2}$ as defined in [13']:
[19'] $<$ delayAsymmetry $\left(x_{1}\right)>=\frac{-\left(x_{1}-x_{m s}\right)\left(<\text { roundTripDelay }\left(x_{1}\right)>-<\operatorname{roundTripDelay}\left(x_{2}\right)>\right)}{2\left(x_{1}-x_{2}\right)}$
In IEEE 1588 nomenclature:
$x_{m s}=\mathrm{X}_{\mathrm{oWD} 1}$
$x_{1}=\mathrm{X}_{\mathrm{oWD2}}$
$x_{2}=\mathrm{X}_{\mathrm{oWD} 2}$
b) Constant transmission characteristic $\mathrm{X}_{\text {owD1 }}$

$\left[20^{\prime}\right]$ <delayAsymmetry $>=\frac{\left(\mathrm{X}_{\mathrm{owD1}}-\mathrm{X}_{\mathrm{owD2} 2}\right)(<\text { roundTripDelay> }-<\text { roundTripDelay" }>\text {) }}{2 \cdot\left(\mathrm{X}_{\mathrm{oWD}_{2}}-\mathrm{X}_{\mathrm{oWD}_{2}}^{\prime}\right)}$

