

Peter Jansweijer IEEE1588 DELAY ASYMMETRY **MEASUREMENT MODE:** THREE ONE-WAY DELAY MATH Version 1.0 / May 2023

IEE1588-2019 **7.4.2** *), **):

 $< meanPathDelay > = \frac{t_{ms}+t_{sm}}{2}$ [1] [2] $t_{ms} = \langle meanPathDelay \rangle + \langle delayAsymmetry \rangle$ [3] $t_{sm} = \langle meanPathDelay \rangle - \langle delayAsymmetry \rangle$ From 2 and 3 follows: $< delayAsymmetry > = \frac{t_{ms} - t_{sm}}{2}$ [4]

 t_{ms} is a function of x_{ms} t_{sm} is constant

 $< roundTripDelay > as a function of x_{ms}$ is: < roundTripDelay(x_{ms}) > = $t_{ms}(x_{ms}) + t_{sm}$ [5]

*) kept the 2019 notation for t_{ms} and t_{sm} for the time being. Replacement of master/slave into timeTransmitter and timeReceiver would probably yield t_{tTtR} and t_{tRtT} or t_{TR} and t_{RT} respectively. **) <meanPathDelay>, t_{ms}, t_{sm} are used here, which may be replaced by <meanLinkDelay>, t_{resp-to-req}, t_{req-to-resp} when peer-to-peer delay mechanism is used.

Three one-way delay math

Peter Jansweijer

Suppose timeTransmitter to timeReceiver changes transmission characteristic x then

Substitute [5] into [4] :

[6] < delayAsymmetry(x_{ms}) > = $\frac{\langle roundTripDelay(x_{ms}) \rangle - 2t_{sm}}{2}$ At equal transmission characteristic $x_{ms} = x_{sm}$, < delayAsymmetry > = 0 so [6] results in: $2t_{sm} = \langle roundTripDelay(x_{sm}) \rangle$ [7] Substitute [7] into [6] leads to < delayAsymmetry > as a function of x in terms of round-trip-delays:

For $x_{ms} = x_1, x_2$ and fixed x_{sm}, t_{ms} can be expressed as t_{sm} plus a time t depending on x_{ms} [9] $t_{ms}(x_{ms}) = t_{sm} + t(x_{ms})$

From [5] follows [10] < roundTripDelay(x_{ms}) > = $t(x_{ms}) + 2t_{sm}$

Three one-way delay math

[8] < delayAsymmetry(x_{ms}) > = $\frac{\langle roundTripDelay(x_{ms}) \rangle - \langle roundTripDelay(x_{sm}) \rangle}{\gamma}$

Version 1.0

Nikhef

Substitute [10] into [6] :

[11] < delayAsymmetry(x_{ms}) > = $\frac{t(x_{ms})}{2}$ [seconds per "unit of x"]: $\frac{\langle \text{delayAsymmetry}(x_{ms}) \rangle}{\Delta_{\gamma}} = \frac{t(x_{ms})}{2\Delta_{\gamma}} = tangent$ [12]

define [13a] $\Delta x_1 = x_1 - x_{sm}$ [13b] $\Delta x_2 = x_2 - x_{sm}$ combine [12] and [13] $\langle \text{delayAsymmetry}(x_1) \rangle = \langle \text{delayAsymmetry}(x_2) \rangle = \frac{t(x_1)}{t(x_2)} = \frac{t(x_2)}{t(x_2)}$ [14] Δx_1 Δx_2

Three one-way delay math

Under the assumption that there is a (nearly) linear relation of one-way-delay as a function of transmission characteristic x, for (small) Δx , scaling [11] to Δx yields a tangent slope in

 $2\Delta x_2$ $2\Delta x_1$

thus:

[15] $t(x_2) = t(x_1) \frac{\Delta x_2}{\Delta x_1}$

measured < roundTripDelay > for x_1 and x_2 can be expressed using [10] < roundTripDelay(x_1) > - < roundTripDelay(x_2) > = $t(x_1) - t(x_2)$ [16] feeding [15] into [16]

[17] $t(x_1) = (< \text{roundTripDelay}(x_1) > - < \text{roundTripDelay}(x_2) >) \frac{\Delta x_1}{\Delta x_1 - \Delta x_2}$

< delayAsymmetry > as a function of measured < roundTripDelay > at x_1 and x_2 is (substitute [17] into [11]):

[18] < delayAsymmetry(x_1) > =

Three one-way delay math

- $(< \text{roundTripDelay}(x_1) > < \text{roundTripDelay}(x_2) >) \frac{\Delta x_1}{2(\Delta x_1 \Delta x_2)}$

Version 1.0

Nik hef

substitute Δx_1 , Δx_2 as defined in [13]:

[19]

In IEEE 1588 nomenclature:

$$\begin{array}{l} x_1 &= X_{oWD1} \\ x_2 &= X'_{oWD1} \\ x_{sm} &= X_{oWD2} \\ < roundTripDelay(x_1) > &= &=$$

[20]

Three one-way delay math

Peter Jansweijer

< delayAsymmetry $> = \frac{(X_{oWD1} - X_{oWD2})(< roundTripDelay > - < roundTripDelay'>)}{}$ $2 \cdot (X_{0WD1} - X'_{0WD1})$

Version 1.0

Nikhef

The other way around: Suppose timeReceiver to timeTransmitter changes transmission characteristic then t_{ms} is constant one-way-delay-1 t_{sm} is a function of x_{sm} timeTransmitter

Three one-way delay math

Peter Jansweijer

 $< roundTripDelay > as a function of x_{sm}$ is: < roundTripDelay(x_{sm}) > = $t_{ms} + t_{sm}(x_{sm})$ [5'] Substitute [5'] into [4] :

[6'] < delayAsymmetry(x_{sm}) > = $\frac{2t_{ms} - \langle \text{roundTripDelay}(x_{sm}) \rangle}{2}$ At equal transmission characteristic $x_{sm} = x_{ms}$, < delayAsymmetry > = 0 so [6'] results in: [7'] $2t_{m_s} = < \text{roundTripDelay}(x_{m_s}) >$ Substitute [7'] into [6'] leads to < delayAsymmetry > as a function of x in terms of round-trip-delay: [8'] < delayAsymmetry(x_{sm}) > = $\frac{\langle roundTripDelay(x_{ms}) \rangle - \langle roundTripDelay(x_{sm}) \rangle}{z}$

*) Note: kept the 2019 notation for t_{ms} and t_{sm} for the time being. Replacement of master/slave into timeTransmitter and timeReceiver would probably yield t_{tTtR} and t_{tRtT} or t_{TR} and t_{RT} respectively

Three one-way delay math

Peter Jansweijer

For $x_{sm} = x_1, x_2$ and fixed x_{ms}, t_{sm} can be expressed as t_{ms} plus a time t depending on x_{sm} [9'] $t_{sm}(x_{sm}) = t_{ms} + t(x_{sm})$

From [5'] follows [10'] < roundTripDelay(x_{sm}) > = $2t_{ms} + t(x_{sm})$

Substitute [10'] into [6'] :

[11'] < delayAsymmetry(x_{sm}) > = $\frac{-t(x_{sm})}{2}$ Under the assumption that there is a (nearly) linear relation of one-way-delay as a function of transmission characteristic x, for (small) Δx , scaling [11'] to Δx yields a tangent slope in [seconds per "unit of x"]: [12'] $\frac{\langle \text{delayAsymmetry}(x_{sm}) \rangle}{\Delta_{\gamma}} = \frac{-t(x_{sm})}{2\Delta_{\gamma}} = tangent$

Three one-way delay math

Peter Jansweijer

combine [12'] and [13']
[14']
$$\frac{\langle \text{delayAsymmetry}(x_1) \rangle}{\Delta x_1} = \frac{\langle \text{delayAsymmetry}(x_2) \rangle}{\Delta x_2} = \frac{-t(x_1)}{2\Delta x_1} = \frac{-t(x_2)}{2\Delta x_2}$$

thus:

$$[15'_{=15}] t(x_2) = t(x_1) \frac{\Delta x_2}{\Delta x_1}$$

measured < roundTripDelay > for x_1 and x_2 can be expressed using [10] $[16'_{=16}] < \text{roundTripDelay}(x_1) > - < \text{roundTripDelay}(x_2) > = t(x_1) - t(x_2)$ feeding [15'] into [16']

[17'₌₁₇] $t(x_1) = (< \text{roundTripDelay}(x_1) > - < \text{roundTripDelay}(x_2) >) \frac{\Delta x_1}{\Delta x_1 - \Delta x_2}$

Three one-way delay math

Version 1.0

Nikhef

< delayAsymmetry > as a function of measured < roundTripDelay > at x_1 and x_2 is (substitute [17'] into [11']):

[18'] < delayAsymmetry(x_1) > =

Three one-way delay math

Peter Jansweijer

 $-(< \text{roundTripDelay}(x_1) > - < \text{roundTripDelay}(x_2) >) \frac{\Delta x_1}{2(\Delta x_1 - \Delta x_2)} =$

substitute Δx_1 , Δx_2 as defined in [13']:

Three one-way delay math

Peter Jansweijer

